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ACRONYMS AND DEFINITIONS 
Acronym Definition 

5G NR 5th Generation New Radio 

AES Advanced Encryption Standard https://en.wikipedia.org/wiki/Advanced_Encryption_Standard  

AI Artificial Intelligence 

AMQP Advanced Message Queuing Protocol https://www.amqp.org/  

API Application Programming Interface 

AR Augmented Reality 

CAN Controller Area Network 

CBC Cipher Block Chaining 

CIDR Classless Inter-Domain Routing 

CN Core Network 

COVID-19 Corona Virus Disease of 2019 

Dapps Decentralized apps 

DLT Distributed Ledger Technology 

ECG Electrocardiogram 

EMS Edge Management System 

ETH Ether crypto currency 

FML Fast Machine Learning 

GPS Global Positioning System 

HMAC (Keyed) Hash-based Message Authentication 

HMU Head Mounted Unit 

HyperMAS Hypermedia Multi-agent System 

IAKM Infrastructure Assisted Knowledge Management 

ID Identification 

IDS Intrusion Detection System 

IMSI International Mobile Subscriber Identity 

IO Input/Output 

IoT Internet of Things 

ISAR Interactive Streaming for Augmented Reality 

IT/OT Information Technology/Operational Technology 

JSON JavaScript Object Notation 

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.amqp.org/
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JSON-LD JSON for Linking data  

JSON-RPC JSON-based Remote Procedure Call 

JWT JSON Web Token  

Keycloak Keycloak Open-Source Identity and Access Management 

LLDP Link-Layer Discovery Protocol 

MEC Mobile Edge Computing 

MTD Moving Target Defenses 

Node-RED Low-code programming for event-driven applications https://nodered.org/ built on Node.js   

NodeJS The node.js open-source cross-platform JavaScript runtime environment 

OAuth Open Authorization (https://oauth.net/) is a way to get access to protected data from an 
application.  

OpenID 
Connect 

OpenID Connect (https://openid.net/connect) is a simple identity layer on top of the OAuth 2.0 
protocol 

OpenAPI OpenAPI (https://www.openapis.org) is a specification language for HTTP APIs. 

QoS Quality of Service 

RabbitMQ RabbitMQ (https://www.rabbitmq.com) is an open-source message broker 

RAN Radio Access Network 

ROS Robot Operating System, https://www.ros.org  

RNTI Radio Network Temporary Identifier 

SAP Security Assurance Platform 

Solidity Solidity (https://soliditylang.org) is a statically-typed programming language designed for 
developing smart contracts that run on Ethereum 

TD W3C WoT Thing Description 

TLS Transport Layer Security 

TSN Time Sensitive Networking 

TUN Network TUNnel, a kernel virtual network device  

UC IntellIoT Use Case (1: agriculture, 2: healthcare, 3: manufacturing) 

UDP User Datagram Protocol 

UE User Equipment 

UML Unified Modelling Language 

UR5 Universal Robots UR5 Collaborative Robot Arm (https://www.universal-
robots.com/products/ur5-robot) 

VLAN Virtual Local Area Network 

VPN Virtual Private Network 

https://nodered.org/
https://oauth.net/
https://openid.net/connect
https://www.openapis.org/
https://www.rabbitmq.com/
https://www.ros.org/
https://soliditylang.org/
https://www.universal-robots.com/products/ur5-robot
https://www.universal-robots.com/products/ur5-robot
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VR Virtual Reality 

W3C  World Wide Web Consortium  

WoT Web of Things 

WP Work Package of IntellIoT project 
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1 INTRODUCTION  
This deliverable D5.4 summarizes the work that has been done in the second cycle of Task 5.1, related to the 
integration of components and their interfaces in the 3 UCs of IntellIoT. The predecessor of this document is the 
first version D5.1. The aim of Task 5.1 is to implement the IoT applications, their underlying services, and the 
planned demonstrators of the use cases, while remaining in the developer environment and utilizing mostly 
simulated data. The step towards the demonstration environment is done in Task 5.2. Deliverable D5.4 therefore 
provides the final version of the integrated IntellIoT framework of technology components (from WP3 and WP4) as 
well as the final implementation of use case applications and services. The components of the IntellIoT framework 
are based on the 3 pillars: (a) human-defined autonomy, (b) distributed, self-aware IoT applications and (c) an 
efficient, reliable, and trustworthy computation & communication infrastructure as indicated Figure 1. 

 

Figure 1: The IntellIoT framework – example artifacts and devices are shown in the upper, deployment part. 

The relation to other Tasks and Deliverables of the IntellIoT project is the following:  

In T2.3, the architecture specification & interoperability the components were defined and described in D2.3 “High 
Level Architecture”. In the first versions of the deliverables of the tasks of WP3 (distributed self-aware IoT 
applications) and WP4 (Efficient, reliable, and trustworthy computation & communication infrastructure) the 
technological components making up the IntellIoT framework have been described in detail. T5.2 is following T5.1 
in the project’s progress. It will deploy, test, and demonstrate the IntellIoT framework components and UC 
applications in the demonstration environment, which means we will conduct the demonstrations for the 3 UCs in 
real-life settings by incorporating, e.g., an actual tractor, real patients, and actual manufacturing devices and 
machinery. 

1.1 Outline of this Deliverable 

To present the work of Task 5.1 on integrating the components, the remainder of this deliverable is organized as 
follows:  

• Chapter 2 details the integration efforts on the different components of the IntellIoT framework. 
• Chapter 3 describes the use case specific implementations, particularly, the implemented applications 

and services. 
• Chapter 4 concludes this deliverable and outlines future work. 



ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

10/85 

2 COMPONENT INTEGRATION 
In D2.6 the final high-level architecture of IntellIoT was described. Components were identified and clustered into 
five core component groups (see Figure 2, which is described in D2.6 as Figure 13). In the deliverables of WP3 and 
WP4 the functionality and design of those components is described. Before the deployment of these components 
to UC1-3 is done in T5.2, they are integrated in the developer environment. Therefore, in the following sections the 
test environment, inputs, and evaluation of the outputs are described. The sections represent the first four core 
component groups, and we describe the individual components within these groups in the respective subsections. 
The fifth core component group (the use case specific implementations) is covered separately in Chapter 3. 

 

Figure 2: High-level view of IntellIoT’s logical architecture (Source: D2.6, Figure 13) 

2.1 Overview of Integration and Implementation Methodology 

Integration of components (deployment is content of follow-up task T5.2), is done in different developer 
environments. For Continuous Integration (CI) a private GitLab group was set up with sub-groups for the pillars of 
IntellIoT containing further sub-groups and projects for the components (see Figure 2). 
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Figure 3: Private GitLab group of the IntellIoT project. 
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From May 2021 to July 2023, 48 bi-weekly WP5 online meetings including T5.1 topics were held. 
When, after Covid lockdowns, the consortium members finally could meet face to face in Munich at the consortium 
meeting #5 (Nov 2nd & 3rd 2021), it was easier to align integration issues of the 3 UCs. A result was e.g., the UC1 demo 
setup slide in Figure 4. 

 

Figure 4: UC1 demo setup worked out at Consortium Meeting#5. 

2.2 Collaborative IoT Enablers 

2.2.1 HYPERMEDIA MAS INFRASTRUCTURE 

The Hypermedia MAS Infrastructure1 is a platform that is used to create and deploy hypermedia environments that 
are based on the Agents & Artifacts Meta-Model. Its key abstractions are “workspaces”, and “artifacts”, and 
“agents”. The “workspaces” and “artifacts” are modelled as W3C WoT Things and expose their functional interfaces 
using W3C WoT Thing Description2. While agents are not modelled as W3C WoT Things, they also provide a REST 
API. The infrastructure furthermore permits Agents to observe resources in the hypermedia environment through 
a W3C WebSub Hub. Since the Hypermedia MAS Infrastructure is described in detail in Section 3.1 of IntellIoT 
Deliverable D3.5, we only give a brief account of its capabilities for contextualization in this integration-oriented 
document. 

A version of the Hypermedia MAS Infrastructure is deployed on HSG’s servers3 and is reachable world-wide. 
Together with locally deployed instances of the MAS Infrastructure, this is used in the IntellIoT use cases. To 
machine clients, it then provides the functionality to create, populate, and update hypermedia environments 
containing workspaces, artifacts, and agents. Relevant devices that are deployed in HSG’s laboratories (e.g., 

 

 

 
1 https://github.com/Interactions-HSG/yggdrasil  
2 These refer to the World Wide Web Consortium’s (W3C) Web of Things (WoT) standardization group that has 
recently standardized Thing Descriptions (TDs) that describe the metadata and interfaces of WoT Things. 
3 https://yggdrasil.interactions.ics.unisg.ch/  
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mobile robots4 and stationary robots5) that mock devices from IntellIoT partners (in this case, AVL’s autonomous 
tractors and Siemens’ UR5 robots) as well as selected devices that are deployed with IntellIoT partners (e.g., the 
UC3 Mock Engraver6) are registered with the infrastructure using W3C WoT TD. Given this setup, for the registered 
(hypermedia) artifacts (i.e., the robots, engraver, etc.), the infrastructure exposes the W3C WoT TD-described 
hypermedia controls to permit Agents to interact with this artifact and to permit Domain Experts to configure 
Agents to autonomously interact with it (see Section 2.2.2, Web-based IDE for Hypermedia Multi-Agent systems). 
In addition, artifact TDs can be updated, and clients can subscribe to receive notifications through the 
infrastructure’s W3C WebSub Hub. Furthermore, the infrastructure exposes semantic containment relationships 
using the EVE vocabulary (see [1] and [2]) for the current version and the HMAS7 vocabulary for the version in 
development workspaces and environments that permit the crawling of all registered resources and, thus, the 
efficient searching for artifacts that might be required by a client. 

2.2.1.1 INFRASTRUCTURE ASSISTED KNOWLEDGE MANAGEMENT (IAKM)  

The IAKM module has a dual task of assisting in the identification of potential AI models required by an agent 
according to a specific semantic, as well as assisting in the training of an AI model according to the model's 
required environment semantics. Accordingly, the IAKM provides two main functions to other IntellIoT 
components: 

• An HTTP API to subscribe to train or use a required model. 
• A JSON-based semantic for AI models uniquely describing the AI model or the AI environment required to 

use, respectively to train. 

2.2.1.2 IAKM INTERNAL FUNCTIONS 

The IAKM has two components; IAKM backend and IAKM client, securely connected and provided as a multi-
microservice docker container.  

The IAKM backend is a set of microservices provided as a multi-docker container and providing the infrastructure 
side of knowledge management. It consists of various complementary microservices: 

• Databroker – It is implemented as an MQTT broker, with secured subscription and message passing 
between the IAKM agents and the IAKM server microservice. 

• IAKM server - its main objective is to handle the authentication of the external microservices, such as the 
IAKM clients pr the global AI component. Its second objective is to act as a Web server and expose an HTTP 
API to the AI entity. 

• Database – it is implemented as a MongoDB and is connected to the AIKM server to save and retrieve 
knowledge models if locally available. 

The IAKM client is a set of microservices provided on the client side and connected over an HTTP API to local AI 
workers. It has two main interfaces: 

• Northbound API – it is a MQTT API to send and retrieve data from the databroker. It also subscribes to the 
AIKM server. 

• Southbound API – it is a HTTP API to expose subscribe and publish functions. 

 

 

 
4https://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-
agriculture/artifacts/spockbot  
5 http://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-industry/artifacts/leubot1  
6 https://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-industry/artifacts/engraver  
7 https://ci.mines-stetienne.fr/hmas/core# 
 

https://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-agriculture/artifacts/spockbot
https://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-agriculture/artifacts/spockbot
http://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-industry/artifacts/leubot1
https://yggdrasil.interactions.ics.unisg.ch/environments/intelliot/workspaces/uc-industry/artifacts/engraver
https://ci.mines-stetienne.fr/hmas/core
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The architecture of the IAKM (back end and client) is available in Figure 5. 

 

Figure 5: Component architecture of the IAKM (server back end and client). 

 

2.2.1.3 IAKM MESSAGE FLOW AND INTEGRATION WITH AI COMPONENTS 

Figure 6 illustrates the message flow and integration of the IAKM client and backend with the Global AI component. 
In this example, we considered one AI infrastructure as a FML controller and two AI agents as FML workers for two 
functions: 

• AI knowledge retrieval for usage – one or more AI agents require the assistance of the IAKM to locate a 
particular AI model. In that function, the AI infrastructure is not required. If the IAKM has the requested 
model in its local DB it will provide it to the AI agent. If not, it will contact the external IAKM backend entities 
to locate the AI model. 

• AI knowledge training assistance – the IAKM does not train AI models but provides assistance in the 
training in the form of the identification of the most efficient AI agents to train a particular AI model. 

Although IAKM internal message exchanges are either based on MQTT or plain socket APIs, the IAKM only exposes 
HTTP APIs to subscribes to a particular IAKM service, to post or get particular AI models. 

The upper part of Figure 6 (for usage) shows that both FML controller and both AI agents subscribe to an IAKM 
service. Note that specific callback functions are implemented on the IAKM agent and server to provide a REST 
subscription API. In the example, the AI agents subscribe to a particular AI model according to a specific AI 
semantic. The IAKM retrieves the AI model and pushes it back to the AI agents. 

On the lower part of Figure 6 (for training), we can see that the AI agents subscribe for their availability to train 
according to a particular environment (transmitted using an AI semantic). In turn, the FML controller subscribes to 
finding AI agents according to a particular context. The IAKM server makes the match and provides the AI model to 
the matching AI agents. In turn, after training, both agents send the updated models to the IAKM server, which 
pushes back to the FML controller. Once merged, the updated AI model is saved on the IAKM database. 
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Figure 6: Process flow of IAKM assisted FML training and FML model exchange 

2.2.1.4 IAKM HTTP API DESCRIPTION  

Figure 7 depicts the subscription flows between the FML controller, the FML agent and the IAKM. The IAKM agent 
HTTP API provides callback-based subscriptions to three AI functions: 

• Train – it is a subscription to ask for the assistance of other AI agents to jointly train a required model. In 
the case of an infrastructure FML, the IAKM will locate AI agents and provides them to the FML controller. 
In the case of Gossip FML, the IAKM locates AI agents itself and exchange AI models directly between AI 
agents.  

• Use – it is a subscription to ask the IAKM to retrieve an AI model it needs to use.  
• Available – it is a subscription to indicate to the FML controller that the AI agent is available for training 

according to the current AI context. 

The IAKM server provides different services: 
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• Save/load - saves or loads an AI model from the DB and provides it either to the infrastructure AI or to the 
AI agents. 

• Subscription matching – provides the matching between the subscriptions of the infrastructure AI and the 
AI agents. 

 

Figure 7: IAKM HTTP interactions for the FML service. 

The subscription matching may be better seen on Figure 8. After both FML controller and workers initially 
subscribe to the IAKM backend (broker), the IAKM server matches both according to a similarity index on the AI 
semantic and publish the matching AI model.  

 

 

Figure 8: IAKM subscription/matching process for FML service. 

 

2.2.1.5 IAKM EXAMPLE – FML TRAINING 

Figure 9 depicts the output of the IAKM assisting FML. Both FML and the FML workers are implemented are pytorch 
FML code connected to the IAKM via the exposed HTTP APIs. The selected semantics to subscribe to and post AI 
models are generic at that stage and for the sole purpose of showing the functionality of the back-end services. 
The IAKM AI semantics are currently being defined. 
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Figure 9: IAKM FML service demonstration. 

2.2.2 WEB-BASED IDE FOR HYPERMEDIA MULTI-AGENT SYSTEMS 

The Web-based IDE for Hypermedia MAS enables Domain Experts to configure Hypermedia MAS by integrating 
Agent-oriented Programming with a no-code environment that permits programming Agents’ procedural 
knowledge as well as the organizational setup of a Hypermedia MAS. This component is described in detail in 
Section 3.2 of the IntellIoT Deliverable D3.5 and we therefore only give a brief account of the capabilities of the 
currently implemented system. 

Using the Web-based IDE for Hypermedia MAS, Domain Experts can select an operating workspace from the 
workspaces provided by the Hypermedia MAS Infrastructure, and thereby gain access to the artifacts in that 
workspace via W3C WoT TDs. Based on these machine-readable descriptions of the artifact interfaces, the Web-
based IDE synthesizes Blockly no-code programming blocks that are tied to programming abstractions in the 
Jason agent programming language. By combining these blocks, Domain Experts may configure Agents to 
consume information from artifacts, reason upon it, and issue commands to artifacts based on their reasoning. 
Agents may also be configured to communicate with each other. The Web-based IDE can also create organizations 
by using graphical abstractions to represent the structural, functional, and normative components of an 
organization. The Web-based IDE can also attribute a role to an agent running on the Hypermedia MAS 
Infrastructure.  Using the current version of the Web-based IDE for Hypermedia MAS, Domain Experts may program 
multiple Agents simultaneously using the blocks abstraction (including authentication workflows when using 
interaction affordances of devices and services, which is currently limited to key-based authentication methods 
[Basic, API-Key]), persist and load Agent code, define and store MAS configurations, submit MAS configurations 
for execution, and add and remove Agents to/from a currently running MAS. 

2.2.3 GOAL SPECIFICATION FRONTEND 

The Goal Specification Frontend is a UC-specific component, described in Section 3.3 in Deliverable D3.5. This 
component enables the end user to define a goal to send it to an agent running on the Hypermedia MAS 
Infrastructure.  

This component can be integrated within an existing interface for end users. For example, in UC1, the Goal 
Specification Frontend was implemented by adding a button to a farming management system that was provided 
by one of the IntellIoT Open Call partners. Using this button, the user sends a generated goal to an agent running 
on the Hypermedia MAS Infrastructure whose URL is known by serializing the goal into the JSON format that the 
agents can parse. In UC3, the component was created from scratch since no interface for end users was provided 
in this use case. 



ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

18/85 

2.2.3 INTEROPERABILITY BOX 

The Interoperability Box (IO Box) has been described in Deliverable D3.5. As a component in the IntellIoT framework, 
it aims to interface heterogeneous devices that have either their own private semantics or are unable (from a 
computational point of view as these are limited resource devices) to communicate with the Hypermedia MAS and 
the related communication mechanisms it uses. The Interoperability Box is deployed in an intermediate node 
(assuming the role of a gateway) bridging IoT devices and the IoT application.  

The gateway has the necessary physical interfaces to communicate with those devices and the software stack 
necessary to bridge these devices with the IoT application. The software stack has two main components. The 
first one involves the device-specific low-level drivers that represent how the local system views and accesses the 
device. The second component (called IO Box) provides a translation between this local view and a higher level W3C 
WoT TD description that the remote IoT application may use to communicate with the device. In this way, devices 
with protocols that do not yet have a W3C WoT TD binding become available. Once the device description has been 
advertised to the HyperMAS, the communication API is defined, and the IO Box implements the specified HTTP 
REST API to enable the handling of the device from the IoT application. Figure 10 demonstrates this architecture. 

 

 

Figure 10: High-level, logical architecture of Interoperability Box 

The Interoperability Box requires a Linux-capable device, with proper physical interfaces with all devices that have 
limited resources and need its services to communicate with the IoT application. A common example of such a 
device is the Raspberry Pi, which is the device chosen for demonstration purposes in IntellIoT. 

The latest version of the Interoperability Box can be found on the public repository at 
https://gitlab.eurecom.fr/intelliot/iobox . 

https://gitlab.eurecom.fr/intelliot/iobox
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It is developed in Python and can run in any system that supports recent Python versions. The provided 
functionality by the current version is communication with a MiroCard  [5] over BLE (used as a demonstrator in the 
Manufacturing use case), and generic serial devices to facilitate the second Open Call partners. Within IntellIoT the 
Interoperability Box runs on a Raspberry Pi device provided by HSG. 

When the Interoperability Box is executed using the Manufacturing use case configuration, it provides the 
following endpoints: 

• / 
• /devices 
• /devices/ble 
• /devices/ble/mirocard_testbed/temperature 
• /devices/ble/mirocard_testbed/humidity 

All of the above use GET requests. Other types of requests can be added when that is meaningful for the underlying 
device (for example when the underlying device is an actuator). The first three requests are not tied to a specific 
device. '/' is used as a health check endpoint. '/devices' will list the number of configured devices per interface, for 
example: 

{ 

    "ble": 1, 

    "serial": 2 

} 

And for each interface type listed above, one can also request the configured device details using for example the 
'/devices/ble' endpoint: 

{ 

    "mirocard_testbed": { 

        "mac": "60:77:71:57:17:c9", 

        "module": "ble", 

        "name": "testbed", 

        "type": "mirocard" 

    } 

} 

In the MiroCard case, we can check the values measured but cannot send commands to it. The Interoperability Box 
will always store the latest MiroCard measurement and provide that as a response. Measurement value is always 
accompanied by the measurement timestamp so the requesting party can take more meaningful actions about the 
value it received. For example, a GET request at the '/devices/ble/mirocard_testbed/temperature' endpoint, yields 
a response like the following: 

{ 

    "temperature": 21.58, 

    "timestamp": 1678460287 

} 

2.2.4 GLOBAL AND LOCAL AI 

In collaboration, global and local AI establish a distributed AI system, implementing Federated Learning. The main 
tasks of the Global AI Component are model aggregation and model evaluation. The main two roles of the Local AI 
are (I) to train the local AI model using training over local data and communicating with the Global AI, and (II) to make 
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local inference utilizing the knowledge acquired throughout the network. The tasks defined under inference is use 
case-specific, which are described separately in Chapter 3. In that section, we also briefly describe the integration 
of the Global AI with the Local AI Component and the IAKM Components.  

2.2.4.1  RESOURCE AWARE SCHEDULER 

In UC1 and UC3, the Global AI Component perform an additional function of resource-aware scheduling: Depending 
on the available computation and communication resources, it determines which Local AI components need to be 
scheduled to carry out local model training for a given training iteration.  Here, the objective is to ensure that the 
accuracy of the model is improved over scheduling a subset of Local AI components. 

Input: For a given training iteration, the size of the local datasets, the estimates of local computing power available 
at the devices running Local AI components, the estimated channels between the local devices and Global AI 
component, and available communication resources (resource blocks) are used as the input for the Resource 
Aware Scheduler. 

Output: A Boolean vector corresponding to a subset of Local AI Components that needs to carryout local model 
training and model sharing during the selected training iteration. 

Test Environment: This is tested over a simulated, which is a Python development environment running on a 
Windows workstation. Here, the local computing power availability is modelled as a Poisson arrival process [3] and 
the dynamic wireless channel are generated according to Rayleigh distribution [4]. 

2.2.4.2 MODEL AGGREGATOR 

The role of Model Aggregator is to update the Global AI Model using the inputs received from the Local AI 
components. 

Input: For each training iteration, the size of the local datasets along the Local AI Models are used as the input. 

Output: The Local AI Models parameters are averaged in terms of dataset size as their weights to generate the 
parameters of the Global AI Model, which is the output of the Model Aggregator.  

Test Environment: This is implemented and tested over simulated environments that typically run on development 
PCs, prior to integration. 

2.2.4.3 MODEL EVALUATION 

As part of the federated learning process, new AI models with the aggregated updates from the Local AI need to 
be evaluated against the base or current Global AI model. This evaluation is performed by computing an 
appropriate model performance metric (accuracy, mean squared error, amongst others) on a curated dataset 
available at the Global AI. The evaluation will determine if the new AI model should be sent to the Local AI and 
replace the current Global AI model, also considering the personalization of Local AI models in certain use cases. 

Input: A base or current Global AI model and a new, updated AI model as well as a curated dataset that serves as a 
reference dataset to ensure that model performance is preserved. 

Output: The model performance metric from both models described in INPUT, computed on the curated dataset. 
A researcher will determine if there is an improvement, in which case there is a new Global AI model. The 
researcher will also determine if the new model should be sent to the Local AI. We will as well explore local 
customizations of the model and evaluate approaches towards out of distribution detection to automatically reject 
updates that are based on erroneous or low-quality data and ground truth.  We will explore if this method can reject 
updates based on data collected for instance with wrongly positioned devices or other type of technical errors. 

In UC2, considering that in production the models will be subject to strict regulatory requirements, we separate 
the training and validation processes from the deployment of new models in production and their use for inference. 
Similarly, the exploration of model customization to local data, without updating the global model, will be explored 
as a research concept but not automatically rolled out from the training and validation workflow into the 
production/model inference workflow. 
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Test Environment: As part of the Global AI, deployed on use case specific, accessible location, like Amazon cloud, 
or 5G MEC. 

2.2.4.4 INTEGRATION WITH THE LOCAL AI 

As described in Deliverable D3.6, the federated learning framework used in IntellIoT distinguishes between a Global 
AI and a Local AI. The Global AI will receive model updates sent by the Local AI through a protected and secure API 
and a HTTP over TLS connection on a 5G network. As was described in Deliverable D2.6, pending model aggregation 
and evaluation, updated models with improved performance will be sent to the Local AI through the same API and 
connections. Once the Global AI determines that an improved model is available, it will push it to the Local AI as 
either an update to the model itself or as an update to the whole Local AI. 

It is envisioned that the training as part of the federated learning process at the Local AI will be initiated from the 
Global AI, allowing it to pass to the Local AI various training configuration parameters. It will be left to the 
(integrated) local AI, to decide to participate in a training cycle, depending on constraints of the Edge device, like 
battery level, connection to metered network, etc.  

2.2.4.5 INTEGRATION WITH THE IAKM 

For UC1 and UC3, the AI components will communicate with the IAKM, as described in Deliverables 2.2 and 2.6 and 
in this deliverable Section 4.2.2. 

2.3 Human in the Loop Enablers 

2.3.1 HIL SERVICE  

The HIL Service is an IntellIoT specific service which mediates between HyperMAS and HIL application. Figure 11 
gives an example how the HIL Service, HyperMAS, Edge Orchestrator, Robot Controller, and multiple instances of 
the HIL application could interact on a help request raised by an AI in the manufacturing use case. Please note that 
these interactions are based on the actual interface definitions in the TDs that are resolved at run time. Figure 11 
provides examples of what requests might be sent by the components, which are defined by the component 
vendors and described in Swagger specifications. The HIL service itself solely exposes the “help request” interface, 
which is used by HyperMAS in the example in Figure 11 and depicted in Figure 12. See 
https://gitlab.eurecom.fr/intelliot-project/human-in-the-loop/hil-service/-/blob/master/hil-service.yaml for 
details. All other interfaces referred to in Figure 11 are exposed by the components surrounding the HIL Service 
and defined in the corresponding component descriptions.  

One special thing about the HIL service is the MQTT request which, via a MQTT broker, goes out to all available 
operators, i.e., directly to the Hololenses or the operators. The operator who accepts the request first gets the job, 
later acceptances from other operators will be refused. The HIL service will now establish the realtime-connection 
between the operator and the HIL application. 

To test the HIL Service, we are using an HTTP client, e.g., Postman, to trigger the help request interface. For the 
interaction with other services, we have been using simple stubs, which can be generated from the swagger 
descriptions or W3C WoT TDs and filled with simple code to provide the expected responses. These stubs are by 
and by replaced by the real services where available.  

 

  

https://gitlab.eurecom.fr/intelliot-project/human-in-the-loop/hil-service/-/blob/master/hil-service.yaml
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Figure 11: HIL support operation sequence chart. 
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Figure 12: HIL service HTTP interface 

2.3.2 HIL APPLICATION 

The HIL Application allows humans to play a direct and interventive role during the pilot deployments of UC1 and 
UC3. In the second cycle of this deliverable, a specific HIL Application was developed for each of these use cases. 
The core functionalities of the HIL Application are generally consistent across the two, with some differences in 
their current extents of HIL Service integrations (see below) and their input/output sources (e.g., HoloLens 2 
versus Oculus Quest 2). The HIL Application is based in Unity3D, allowing it to provide immersive two- and three-
dimensional visualizations. These visualizations allow humans to view important state information about IntellIoT 
IoT devices, such as the robot in UC3 or the tractor in UC1, for example. Importantly, the HIL Application has 
integrations with other IntellIoT module components which allow humans to become “in the loop” and control 
dedicated IoT devices directly. The HIL Application is a Windows application and is hosted locally on a PC/laptop, 
rather than instantiated on an edge or cloud-based virtual machine. While detailed information on the HIL 
Application can be found in D3.7 (“Human in the loop in Intelligent IoT environments”), several important details will 
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be mentioned here regarding integrations as they pertain to deployment implementations. For the HIL Application 
in both use cases, the application is enabled with HOLO’s Interactive Streaming for Augmented Reality (ISAR) plugin 
technology. The ISAR-enabled HIL Application as a result is streamed to client augmented and virtual reality 
(AR/VR) devices. ISAR streaming of the HIL Application is mediated by WebRTC and allows the streaming virtual 
content, such as e.g., the digital twin of the UC3 robot or the tractor camera information from UC1, respectively. 
ISAR streaming is not unidirectional however, and here ISAR streams also permit the return of sensor data from 
the AR/VR devices. Sensor data from these devices includes important event and movement information which is 
used when the human-in-the-loop attempts their remote operation of their respective IoT devices. Facilitating 
this return of sensor data to the HIL Application is a dedicated ISAR client application on each AR/VR device. In 
UC1, the Oculus Quest 2 VR and its associated VR controllers are used, whereas UC3 utilizes the HoloLens 2 and the 
Holo-Stylus pen for this purpose. Information from these controllers and the Holo-Stylus used during interaction 
with the digital twin or visualized video stream is used to remotely operate the tractor and robot. To make informed 
and situationally relevant operations, each HIL Application receives video streams and other state information 
about the tractor or robot, which is then visualized to the operator. In UC3, video streams from the robot are sent 
via WebRTC to the HIL Application. In UC1, video streams of the tractor are converted from RTP to WebRTC. This 
conversion previously occurred in the NVIDIA Jetson TTC Motion but now occurs within the HIL Application itself. 
UC3 has additional information, that is consumed by the HIL Application, which is the joint position of the robot 
which is sent through TCP/IP. Control of the tractor and robot occur through the sending of motion commands via 
TCP/IP or API for the robot and tractor, respectively. These commands end up at the controller of the respective 
device. Additionally, these commands are also sent to a Data Repository where local AI can utilize it for future 
learning. Figure 12 depicts the HIL application and its general interfaces. 

In UC2, Human-In-the-Loop (HIL) plays a crucial role in ensuring the effectiveness and safety of the IntellIoT 
system for remote monitoring and caring of cardiovascular patients. The system utilizes Machine Learning (ML) 
algorithms, to predict clinically relevant parameters based on sensor measurements and health-related data. The 
HIL Application in UC2 may not directly involve augmented or virtual reality (AR/VR) devices as in UC1 and UC3, 
however, it still plays a crucial role in the healthcare context. The Vida24© mobile app collects important data about 
the patient, reflecting their health status and progress regarding the assigned care plan. This data is then used by 
physicians to make informed decisions about the patient's condition, care plan adjustments, and interventions. 

The HIL approach in UC2 serves two main purposes. First, it serves as a safeguard for patients, protecting them 
from potentially harmful actions. No AI system is perfect, and there's always a possibility of erroneous predictions 
or recommendations. To mitigate this risk, every recommendation generated by the Local AI can be examined by 
a clinician before being sent to the patient. This additional layer of human oversight helps protect patients from 
potential harm. Secondly, it generates information for AI model training and personalization. Clinicians play a 
significant role in collecting and annotating data for AI model training. Their input gives meaning to the sensor-
generated data, which is then used to train the base model in the Global AI component and personalize the ML 
models in the Local AI setting. Apart from automatic data annotation, clinicians also provide additional annotations 
when inspecting the outputs of trained ML models. They mark certain predictions as unreliable, and the Local AI 
utilizes this information to re-train the model, giving special attention to these erroneous examples. This process 
improves the performance of both the Local and Global AI, as the latter aggregates the models from all patients. 

In summary, the Human-in-the-Loop approach in UC2 plays a pivotal role in ensuring patient safety and enhancing 
the performance and personalization of the AI models used for remote monitoring of cardiovascular patients. By 
incorporating clinician expertise into the system, the IntellIoT framework can deliver more accurate and reliable 
healthcare solutions. 
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Figure 13: Human in the Loop Interfaces. 

The role of the HIL Service is to broker a connection between the human-in-the-loop and the AI of the IoT devices. 
In doing so, the HIL Service allows the human to be notified in the event that the AI cannot take action and needs a 
human to step in to remotely operate. A connection between the MQTT of the HIL Service exists and human-in-
the-loop components exists for UC3 and UC1 directly. Through a publish-subscribe method, the MQTT Message 
Broker sends messages when the AI throws an incident and needs help. For example, a dedicated client application 
on the HoloLens 2 receives these messages (Figure 13). When an operator wearing the HoloLens 2 receives this 
message, they can confirm via a user interface interaction to signal to the HIL Service that they are able to step in 
and assist remotely. Afterwards, through an API call, connectivity protocol information (e.g., IP address) are 
provided from the HIL Service, which allows the HIL Application to connect with the robot controller. Currently, 
such a mechanism is in place for UC1 and UC3 on the Oculus Quest 2 and HoloLens 2, respectively.  

 

 

Figure 14: Unity3D application for HoloLens 2 and MQTT communication. 

 

As mentioned above, the ISAR technology used here operates using the WebRTC protocol. In doing so, it 
establishes a connection between the HIL Application (“Server”) and the AR/VR devices (“Client”). This connection 
is a peer-to-peer connection. The streaming of the entire HIL Application to the Client devices is critical for 
ensuring that the human-in-the-loop can accurately and appropriately operate the IoT devices when needed 
(resulting as mentioned above from the HIL Service). Low latency and fast streaming of the video streams from the 
tractor and robot are required to ensure this. Furthermore, interaction in AR/VR space must be free of lag. 
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Maintaining these parameters during HIL operations is permitted by the high-quality streaming between the client 
and server devices mediated by ISAR. The specific aspects of ISAR processing and connectivity have been 
described in the first version (see Figure 14, 15) of this deliverable and have remained unchanged over the second 
cycle here. 

 

Figure 15: ISAR - Server to Client interface. 

 

Figure 16: ISAR Interaction Diagram. 

 

Figure 17: HIL Application: Machine Data. 
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2.3.3 END USER GOAL SPECIFICATION INTERFACES  

As part of IntellIoT’s T3.1 and specific to UC1 (Agriculture) and UC3 (Manufacturing), we are developing and 
integrating graphical interfaces for end users. These components permit end users (i.e., farmers and customers) 
to specify the goal to be achieved by the IntellIoT system (e.g., “Fertilize Field 5”; “Engrave the text ‘IntellIoT’ in a 
wooden work piece”) and transmit specified goals for processing to an Agent in the Hypermedia MAS Infrastructure 
that has been configured using the no-code configuration environment. 

The end user goal specification interfaces are simple Web applications that exchange JSON-LD payloads with the 
Hypermedia MAS Infrastructure according to agreed-upon schemas. For UC1, the payload contains the ID and entry 
coordinates of the field as well as a description of the desired process to be executed, i.e., the implement to use 
(e.g., a “Sprayer”), the specification of the lines to move along the field (e.g., 30 lines that are spaced 5m apart) and, 
optionally, further parameters for the implement (e.g., flow rate). For UC3, the payload contains the desired work 
piece material and process (e.g., “Laser”) along with a list of drawings (each with properties “Text”, “position”, and 
“size”). 

2.3.4 REMOTE OPERATOR DEVICES 

Enabling the remote operation for the human-in-the-loop are specific operating devices. In both UC1 and UC3, a 
powerful edge device is used to host the HIL Application. The edge device used here is a personal computer/laptop, 
with specifications that permit high quality VR/AR streaming and visualization. The following specifications are 
the minimum requirements of the laptop/edge device for this purpose: 

• Operating System: Windows 10 (10.0..17763 Build) or Windows 11 
• Memory: 16 GB 
• CPU: Intel i5 8th Gen. 6 Cores 
• GPU: NVIDIA GTX 1070Ti 
• Storage: Solid State Drive 

These features are critical for rendering processes to be possible, as described and graphically visualized in 2.3.2. 

The network connectivity between the HIL Application, AR/VR devices, and other IntellIoT components is 
envisioned to be 5G. Currently, the HoloLens 2 and associated HIL Application support 5G connectivity for this 
purpose. In the next cycle of this task, the Oculus Quest 2 in UC1 will be investigated for technical solutions which 
enable 5G connectivity. Irrespective of network connectivity mediums (e.g., Wi-Fi versus 5G), open port 
requirements are still present. For the HIL Application to function (through ISAR streaming) a Port of 9999 is still 
required. In addition, incoming and outgoing WebRTC streams need associated ports as well and will be used here. 

The details about use case specific remote operating devices are given in Section 3.1.3 and Section 3.3.4 for UC1 
and UC3, respectively. 

2.4 Trust Enablers 

The Trust Enablers pillar of IntellIoT, as defined in Deliverable D2.3 - “High level architecture (first version)”, 
comprises innovative building blocks that individually, but also through their tight integration, realise the project’s 
vision to provide security, privacy, and trust by design (see also IntellIoT’s Objective 4: “Enable security, privacy 
and trust by design with continuous assurance monitoring, assessment and certification as an integral part of the 
system, providing trustworthy integration of third party IoT devices and services”). The high-level, logical view of 
the components within said pillar is provided in Figure 18. 
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Figure 18. Trust Enablers UML logical diagram. 

 

The Trust IDS continuously monitors network traffic and analyses it for anomalies. It is a decentralised component 
installed on every node of the IoT system. Each instance computes a local trust value for each other node that it 
communicates with.  When the trust value for a node drops below a threshold, it generates a warning. These 
warnings are left to be processed by the rest of the system to determine if an action is needed to be taken against 
offending nodes. 

Similar to the IDS, the Event Captors (ECs) are software modules responsible for capturing and aggregating 
pertinent evidence from multiple sources related to the operation of individual components, as well as the 
overarching processes where these components are involved in, thus enabling the real-time, continuous 
assessment of the security posture of the IntellIoT system. ECs can be deployed across all layers of the IntellIoT 
architecture, from the robot arm (e.g., to monitor telemetry that may indicate abnormal activities) to device 
operating systems (e.g., to monitor running processes) and backend storage databases (e.g., to parse access logs 
or calculate uptime), due to the fact of their minimal footprint while transmitting their monitoring evidence to the 
Security Assurance Platform (SAP). In addition, Event Captors can collaborate within ElasticSearch data pools, 
leveraging their capturing and aggregating capabilities. 

The SAP is central to the trustworthiness components and has its own queue in the message broker pipeline. SAP 
digest messages respectively from the IDS queue and EC queue while at the same time through appropriate REST 
APIs it can communicate with the Distributed Ledger Trustworthiness (DLT) manager. 

Finally, the MTD components are responsible for prevention and mitigation actions. MTDs are divided into two 
distinct components: the server MTD installed on a central node, and the client MTDs installed in every node of the 
IoT deployment. The first has its own queue (MTD server queue) while MTD clients consume messages from the 
latter queue. The MTD server will generate different network configurations for the overall deployment either 
periodically (in random time intervals) as an attack prevention mechanism or reactively once the SAP receives an 
Intrusion Warning from the IDS.  In the latter case, the MTD system is able to isolate offending nodes from the IoT 
network by updating the network configuration without propagating these updates to these specific nodes.   

While details on the design and implementation of the individual components is provided in Deliverable D4.8 – 
“Trust mechanisms (final version)”, the subsections below will provide additional details on the testing and testbed 
integration of the components, but also their overall integration within the Trust pillar. The latter follows the overall 
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integration as sketched (from a logical, process, development, and deployment perspective) within D2.3, and re-
iterates and expands upon the testing and integration aspects presented in D4.8. 

2.4.1 OVERALL TRUST ENABLERS INTEGRATION 

As detailed in Section 6 of D4.8, a key characteristic that maximises the efficacy of IntellIoT’s Trust Enablers is 
their tight integration and continuous communication through the dedicated Trust Broker. An overview of this 
integration is provided in Figure 19, while for details on the integration (e.g., technologies, message structure and 
sample messages) we refer the reader to D4.8 (Section 6). 

 

Figure 19. Overview of Trust Enablers’ integration via shared Trust Broker. 

 

From a physical (deployment) perspective, the local integration testbed used in SANL’s premises is shown in Figure 
20. 

 

Figure 20. Deployment view of local Trust Enablers’ integration testbed. 

 

2.4.1.1 SAP-DLT INTEGRATION TESTING 

Through interaction between the SAP and the DLT Manager, based on the necessary APIs developed, evidence is 
recorded in the Ledger in an automated manner, and the entries (transaction and block IDs) are returned to the 
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SAP, to be provided to the SAP operator for verification (e.g., in the case of any audit). This provides an additional 
layer of trust for said evidence aggregated at the SAP. 

Our testing of these components encompassed all different types of evidence that these interactions may involve, 
including:  

(i) evidence generated internally at the SAP (e.g., vulnerability or dynamic testing assessment results);  
(ii) evidence the SAP collects from monitoring and interacting with other Trust Enablers (e.g., Trust IDS 

alerts, or triggered MTD strategies), and;  
(iii) monitoring evidence, i.e., reasoning results that are triggered from monitoring the Event Captors 

deployed across the various layers of IntellIoT and the protected deployment. 

A screenshot of a successful message exchange between the SAP and the DLT Manager, whereby SAP Assessment 
Results (in this case Dynamic Testing results) are recorded in the Ledger, can be seen in Figure 21. 

 

Figure 21: Recording of SAP Assessment Results in the ledger, via interaction with DLT Manager (request & 
response). 

Similar to the above, the integration was successfully tested for all envisioned exchanges between the two 
components (e.g., recording to the Ledge evidence such as Trust IDS events, Monitoring events, vulnerability 
assessment results). 

2.4.1.2 IDS, MTD & SAP INTEGRATION VIA BROKER 

As mentioned, the Trust-based IDS and MTD components communicate through a dedicated Trust broker based 
on RabbitMQ. In the following, a description of a demo will be presented to showcase the integration of the IDS, 
MTD server and several MTD clients with a RabbitMQ broker. In this example, a RabbitMQ broker is initiated along 
with an MTD server and two MTD clients. Another node carrying an IDS component is also in the network. Upon 
completing the initialization and node registration phases, the node with the IDS detects that a node’s trust falls 
below a certain threshold, and this triggers a warning message to the broker. This warning is relayed to the MTD 
server that isolates the offending node by sending a new network configuration message to the healthy node. This 
new configuration is not relayed to the offending node and therefore this node is unable to communicate with other 
nodes (effectively it is isolated from everyone else). 

2.4.1.3 TESTING RESULTS 
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To realize this demo, since all software components are dockerized, we employ docker-compose and bring up four 
nodes: 

1. Node 1 with IP address 192.168.176.2, where a RabbitMQ broker is hosted 
2. Node 2 with IP address 192.168.176.3, where the MTD server runs 
3. Node 3 with IP address 192.168.176.4, where a Trust IDS instance is running along with an MTD client 
4. Node 4 with IP address 192.168.176.5 has the same configuration as Node 3 plus a network traffic generator 

IDS monitors network traffic. To simulate a misbehaving node, a traffic generator is executed on Node 4. IDS is 
configured with a suitable packet rate threshold. Every time this threshold is exceeded, trust is decreased for the 
misbehaving node. When trust goes below 25/100, a warning is triggered. 

During the demo, Node 4 starts generating traffic towards Node 3. IDS instance in Node 3 will trigger a warning 
message to the broker concerning Node 4 as soon as its trust value falls below the 25/100 threshold. Then the 
broker relays a new network configuration to Node 3 in order to drop Node 4. Part of the logs during the demo 
follows. 

IDS in Node 3 lowers its trust toward Node 4: 

PacketRateFilter window timeout 

192.168.176.5, trust: 23 

Send warning to broker 

The broker delivers the warning to MTD server. The MTD server drops Node 4: 

Received warning: 

  { 

    "Type":"error", 

    "Action":"drop", 

    "Body":"client2_mtd", 

    "Time":{ 

      "seconds":1639752428, 

      "nanos":612924426 

    } 

  } 

dropping mtd.config.client2_mt 

 

This triggers a network configuration change that is only delivered to Node 3: 

mtd.config.client_mtd -> &{ 

  CIDR:10.0.1.1/24 

  Port:30000 

  Protoc:udp4 

  CipherKey:38336737335274704... 

  CipherType:4 

  ExtIP:192.168.176.4 

  LocIP:10.0.1.1 
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  RoutesToAdd:map[10.0.1.1:192.168.176.4] 

  RoutesToRemove:[10.0.0.1] 

} 

And now Node 4 is successfully isolated. 

 
2.4.2 SECURITY ASSURANCE PLATFORM 

As detailed in D4.8, the Security Assurance Platform (SAP) is an integrated framework of models, processes, and 
tools to enable the continuous assurance and certification of the security properties of assets across the IntellIoT 
infrastructure. 

The initial (Cycle 1) version of SAP has been deployed locally in SANL’s testbed, along with a set of credentials, an 
“IntellIoT” organization and associated project needed to enable testing the correct operation of the different 
capabilities that said platform will have to support (as a standalone component) for the first version of the IntellIoT 
integrated platform. It should be noted that the same testbed was used for the initial integration (and testing of 
said integration) with the other Trust Enablers, as detailed in 2.4.1 above. 

 

Figure 22. Overall view of “Demonstrator” testing project and related KPIs within the SAP front end.  
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Within the “Demonstrator” project an overview of the assets, assessment results, and other key performance 
indicators are correctly shown (see various KPIs in Figure 22 and the list of assets and assessments carried out 
during testing in Figure 23). 

A first step in the use of SAP is the definition of the IntellIoT assurance model (see Section 2.3 of D4.8). For testing 
purposes, a corresponding testing model was created, including assets of all types that reflect the actual testbed 
environment.  

 

 

Figure 23. View of defined assets and executed assessments during SAP testing. 

 

2.4.2.1 ASSESSMENT TESTING 

Furthermore, all types of assessments that will be delivered for Cycle 2 where successfully tested within the local 
testbed environment. These, as detailed in Section 2.4 of D4.4 & D4.8, included:  

(i) Monitoring Assessment with satisfaction and violation of pre-defined testing rules that are based on 
Drools specification language (see results in Figure 24) 

(ii) Vulnerability Analysis Assessment on the testbed assets (see Figure 25 and Figure 26), and 
(iii) Dynamic Testing Assessment of the testbed assets (see Figure 27 and Figure 28). 
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Figure 24. SAP testbed monitoring assessment results. 
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Figure 25. SAP Vulnerability Assessment carried out on testbed setup (Overview, KPIs). 
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Figure 26. SAP Vulnerability Assessment carried out on testbed setup (viewing details on results). 
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Figure 27. SAP Dynamic Testing assessment carried out on testbed setup (Overview, KPIs). 
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Figure 28. SAP Dynamic Testing assessment carried out on testbed setup (viewing details on results). 

 

Finally, the horizontal capability of SAP to export reports of its assessment results in PDF format (e.g., to provide 
in written form the certification evidence required) was also successfully tested, as shown in Figure 29. 
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Figure 29. Exported SAP assessment report in PDF format (in this case, of a vulnerability assessment). 

 

Further testing of the SAP that took place focused on its integration with the rest of the Trust components (as 
mentioned in D2.3, D4.4 & D4.8, SAP is a core component that all other Trust enablers interact with), as was 
presented in Section 2.4.1. 

2.4.2.2 ORCHESTRATION, AUTOMATION & INCIDENT RESPONSE COMPONENT 

CACAO security playbooks can be executed manually or automatically using the Sphynx Incident Response (IR) 
platform. The latter can be configured as a standalone system or as a module attached to the Sphynx Security & 
Privacy Assurance Platform (SAP) and has been thoroughly described in section 2.5 of D.4.8 The IR platform can 
import, export, and run CACAO security playbooks as a standalone solution by using the REST API of each playbook. 
The IR platform functions as a module of the SPAP and can be used to carry out security playbooks prompted by 
the SPAP's components, such as EVEREST and CRISIS, and to make use of data gathered by the Asset Model and 
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the CTI component. The SPAP's components can also be coordinated via the IR platform. The Incident Response 
platform is composed of five main components as presented in Figure 29. 

  

Figure 29. IR Platform architecture overview. 

In accordance with the CACAO specification, the system also provides a graphical drag-and-drop interface for 
building and changing CACAO security playbooks, which may then be executed or exported as CACAO JSON files. 
The IR platform also features an interactive dashboard that delivers real-time views of the system's state and the 
execution of security playbooks in addition to high- and low-level logs, KPIs, user notification, and other data. 

The standalone CACAO engine installation assumes a Linux-based environment with the following tools present: 

• git 
• npm 
• node (Supported: >8.x, Recommended: 14.x) 
• maven 
• jdk11-openjdk 

The basis for the CACAO engine is Node-RED, and the engine is built on top of it as a module. The engine supports 
all Node-RED versions >1.x but we recommend using version 3.0.x. 

2.4.3 TRUST-BASED IDS 

The Trust-based Intrusion Detection System (IDS) has been described in Deliverable D4.8. It is a software 
component that resides on each network node of the IoT application (in the tractor, wearable device, robotic arm 
in IntellIoT’s use cases for example) and monitors network traffic. For every node of the network that there is 
communication with, it builds a trust value based on certain criteria. Depending on the computed trust value, nodes 
are characterised as trustworthy or not and this information (warnings) is relayed to the security components of 
the network so that action may be triggered. More details about the software component, the rules upon which it 
operates, and computes trust values and its implementation architecture may be found in Deliverable D4.8, 
however for clarity and readability purposes Figure 30 reiterates the architecture of the tool. 

https://nodered.org/
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Figure 30. Architecture of the Trust-based IDS tool. 

 

Concerning the integration of the tool with the other software components that is the focus of the current 
deliverable, the Trust-based IDS, as can be seen from Figure 30, uses a secure communication channel. This 
channel is an AMQP broker, that is used to send the trust values and warning messages to the other security 
components (the MTD module and the SAP). AMQP is an application layer messaging protocol that allows for various 
routing topologies, such as point-to-point and publish-subscribe, with TLS support to provide secure 
communication. This communication scheme is depicted in Figure 31. 
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Figure 31: Communication between IDS components and the MTD and SAP modules 

 

2.4.3.1 INTEGRATION OF IDS WITH OTHER TRUST ENABLERS 

IntellIoT employs a dedicated Trust broker based on RabbitMQ and using the AMQP binary protocol as mentioned 
above. Through the broker, the IDS component communicates with the SAP and the MTD components. 

IDS exposes two topics, in JSON format, to the broker for the rest of the security components to consume and 
take appropriate actions.  The first one is the trust topic ‘ids.trust.[node id]’, where each IDS instance 
publishes its trust values for the nodes it has communicated with. An example payload is: 

{ 

  “10.0.0.1”: 0.0, 

  “10.0.0.2”: 1.0, 

  ...  

} 

The second topic is the ‘ids.warn.[node id]’, where each IDS instance publishes a list of nodes that are 
considered untrustworthy. An example payload is: 

{ 

  “nodes”: [ 

    “10.0.0.1” 

  ] 

} 

2.4.4 MOVING TARGET DEFENCES 

The Moving Target Defences (MTD) component has been presented in Deliverable D4.8. The MTD comprises of 
several components that aim to provide a dynamic and constantly shifting configuration to the network 
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infrastructure that they try to defend. This is done either proactively (to prevent an attack) or reactively (to mitigate 
an ongoing attack).  

While MTD can be applied in several ways, in IntellIoT, we focus on managing the network configuration and 
dynamically changing it to fit the needs of the infrastructure. Examples of our strategies include the periodic 
shuffle of IP addresses and communication ports, as well as the encryption of network traffic while changing in 
different time intervals (or as a response to certain events) of the encryption keys and the encryption algorithms 
used to counter sniffing and Man-In-The-Middle attacks.    

The MTD components that have been developed are a client-server set of software components that manage the 
network configuration of the edge network. The MTD server is responsible for managing all the clients, handling 
events like warnings from the IDS or actions from the SAP and generating new configurations. The MTD clients are 
responsible for applying the configuration sent by the server, and based on that configuration, encrypt the traffic, 
and transmit it through tunnels to avoid packet sniffing and Man-In-The-Middle attacks. 

The server and clients communicate by exchanging the network configuration. Parts of the network configuration 
are the same for all clients, and parts are specific to each client.  

The MTD server proactively generates a new configuration at fixed intervals to shift the attack surface, and when 
a warning is received, it reactively generates a mitigation configuration based on predefined strategies to mitigate 
the possible attack. It is also possible for the HIL service to send actions (e.g., isolate node X) through the Security 
Assurance Platform. Configuration changes focus on network layer 3 and above, and do not interfere with the TSN 
controller and the resource reservations it maintains. The MTD clients are responsible for managing the network 
configuration, maintaining an encrypted connection between each other using the routing table sent by the MTD 
server and applying any changes the server sends. 

At start up, each client has to register with the server by sending a registration request containing the client name 
and IP address through the broker. The client name is a combination of the username of the user that owns this 
device and the devices client ID in the format <username>_<clientID> (e.g. ,TSI_sensor1, TSI_sensor2, 
SANL_tractor etc). 

2.4.4.1 INTEGRATION OF MTD WITH OTHER TRUST ENABLERS 

MTD exposes the following topics: 

mtd.registration 

mtd.config.<client name> 

mtd.keepaliveReq.<client name> 

mtd.keepaliveResp.<client name> 

mtd.alert 

mtd.trigger 

2.4.4.1.1 MTD AND SAP 

The MTD client and server applications communicate over a secure channel provided by the Trust Message Broker. 
More specifically, the MTD Server consumes messages generated from IDS and takes mitigation actions when this 
is needed. When such an action is taken, the server needs to notify the Security Assurance Platform, as it is the 
component providing a holistic view of the current security and privacy posture of the system to the operators. 
This happens through the ‘mtd.alert’ topic. 

The reverse case is also needed. The Security Assurance Platform, through the event captors, can also identify 
attacks and trigger a mitigation action using the ‘mtd.trigger’  topic. 

Both of these follow the same payload logic as the ‘ids.warn’  topic: 

{ 

  “nodes”: [ 

    “10.0.0.1” 
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  ] 

} 

2.4.5 AUTHENTICATION – AUTHORISATION – ACCOUNTING (AAA) 

Authentication, Authorization, and Accounting (AAA) in IntellIoT is provided through a framework that allows 
legitimate users or applications to gain access to protected resources, thus ensuring network security. It can 
enforce policies (e.g., define multiple permission levels) and audit usage.  

As described in Deliverable D4.8, the solution selected for IntellIoT is Keycloak. Keycloak comprises a dedicated 
server that centrally controls user access. This decouples local security configuration considerations and allows 
for better scalability and less administrative tasks. Furthermore, the servers available on the network are not 
tasked with storing user credentials locally, which is a preferable approach from both the security and 
administrative perspectives. 

Authorization is the process of evaluating to what extent a user can access a resource. With OAuth 2.0, the 
following four roles are defined: 

(1) Resource Owner (i.e., any entity that owns a number of protected resources, such as files) 

(2) Resource Server (e.g., the actual server that keeps the files) 

(3) Client (e.g., an application that requests access to a resource from the server is a client) 

(4) Authorization Server (the Keycloak server itself in this case) 

When a client wants to access a resource on behalf of an Owner in the Server, it first contacts the Authorization 
Server. The Authorization Server issues a JSON Web Token (JWT) that gives limited access to the resources, which 
can then be used to access the Resource Server. JWT tokens are also a standard format based on JSON, supported 
by libraries for various programming languages. Authentication is the process of identifying a user. OpenID 
Connect defines three roles: 

(1) End User (i.e., entity that needs to be authenticated) 

(2) Relying Party (the application/server that asks for a user to authenticate himself/herself before accessing 
it) 

(3) OpenID Provider (the server providing the actual authentication, i.e., Keycloak in this case) 

Similarly, to the authorization case, a JWT token is used. In this scenario it contains additional information in order 
to signify the authentication process. Accounting is the last functionality provided which is about monitoring 
authentication and authorization events for auditing. These are clustered in two categories: the login events and 
the admin events. Login events are generated during normal operation and cover all authentication and 
authorization aspects. Admin events are generated during Keycloak administration and cover any action that can 
be performed from within the administration web UI. Every action can be recorded and stored in the Keycloak 
database as well as the system log.  

In the following two subsections, two approaches for the deployment of Keycloak in IntellIoT are presented. The 
first one is a direct deployment of Keycloak where a service can access it, as long as it talks OAuth 2.0. The second 
one uses an intermediate reverse proxy node in front of a service that requires authentication and authorization 
but does not support OAuth 2.0. In this way users can authenticate and access a service from their browser. 
Additional work is in progress to allow automated access without a need for a browser. 
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2.4.5.1 USE CASE 2 INTEGRATION 

 

For the Healthcare Use Case we have integrated Keycloak with Vidavo web interface, Vida24. A user can select to 
login via Keycloak as shown below: 

 

In that case, the user will first be redirected to the Keycloak instance for authentication: 
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A legitimate user will be redirected back to Vida24 site and be successfully logged in: 

 

2.4.5.2 USE CASE 3 INTEGRATION 

In Use Case 3, Keycloak provides authentication for users that need access to services running on Edge Devices. 
A reverse proxy installed on the Edge Device handles the communication with the Keycloak instance. It only allows 
requests from authenticated users. A custom port is used for SSL connections towards the reverse proxy. Trying 
to access a service while not authenticated redirects to the Keycloak sign in page: 
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If the user is authenticated and authorized to access the requested service, the reverse proxy passes the request, 
and a response is given back. In the following example we have requested the hil-service sessions. The response, 
although just an empty JSON, shows that we have proper communication in place: 

 

2.4.6  DISTRIBUTED LEDGER TECHNOLOGIES  

There are various types of Distributed Ledger platforms including public DLTs such as Ethereum, Bitcoin, IOTA, 
Solana and private DLTs such as Quorum and Hyperledger Fabric. A detailed comparison and evaluation are given 
in Deliverables D3.4 and D3.8.  

In a cross-domain project like IntellIoT, we exploit the Ethereum Blockchain platform for the use cases due to the 
flexibility and convenience to integrate with different components in heterogeneous environments. Ethereum is a 
distributed public blockchain network that focuses on running the programming code of any decentralized 
application. Specifically, Ethereum is a platform for sharing information across the globe that cannot be 
manipulated or changed. Ethereum has its own cryptocurrency, called Ether (ETH), and its own programming 
language, called Solidity. The decentralized applications on the network are called Đapps. Practically, Ethereum 
provides a convenient platform for development and smart contracts system to integrate with FL. We run the 
Ethereum network via Ganache which is a personal blockchain for rapid Ethereum distributed application 
development for first phase integration. 

The general communication workflow of DLT network is shown in Figure 32:  
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Figure 32 General communication architecture of Ethereum DLT network. 

 

The implementation includes two parts called DLT-manager and DLT-clients. The DLT-managers require more 
resources (e.g., storage and computing capacity) to do verification and validation than DLT-clients, so that DLT-
mangers usually are implemented in edge devices or powerful servers. Meanwhile, the DLT-clients are 
implemented in resource-constrained devices such as IoT devices, and sensors.  

 

The minimum implementation of DLT-managers and clients are described as below:  

 DLT Managers DLT clients 

Storage 4 GB RAM minimum with an 
SSD 

1 GB RAM minimum with an SSD 

Computing  CPU with 2+ cores N/A 

Connectivity Wire/Wireless Wire/Wireless 

Interfaces JSON RPC and REST API JSON RPC and REST API 

Operating System Linux, Windows Linux, Windows  

Smart Contracts Solidity N/A 

Table 1: Minimum requirement for installation of DLT components.  

In the first phase of integration, we built a simple framework to integrate with components from different partners, 
for example, the security and information of vulnerable data from TSI, GPS data from sensor of tractors and record 
these data to tractor controllers, and activities of UR5 Robot arms. We implement an Ethereum private Blockchain 
by using Ganache as DLT-managers to simulate a distributed ledger. For Cycle 2, further updates took place in the 
integration between SAP & the DLT Manager, to support the final (refined) Use Case scenarios, as detailed in 
deliverable D2.4 – “Use Case specification & Open Call definition (final version)”. These updates include richer 
(REST-based) interfacing capabilities, as well as further work on the common deployment of key DLT components 
through the same process (i.e., alongside) the rest of the trust enablers. Moreover, we have progressed in the 
successful integration with the different type of distributed applications for various domains and partner 
platforms, e.g., with the HyperMAS, the Edge Orchestrator, and the tractor controller. Details of these integrations 
are reported in D3.8 “Decentralized trust via secure interaction 
  and contracts (final version)”.  

One example of successful implementation of Ethereum DLT private network is demonstrated as Figure 33 below. 
Each component in the DLT network is assigned an account including a private key and public key. Public key 
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stands for digital identity and broadcast for other nodes, while the private key is used to sign transactions and kept 
secret. The “gas fee” is in this context fee charged by miners for executing a transaction on the Ethereum 
Blockchain. 

 

Figure 33 Implementation of DLT managers. 

After building the DLT infrastructure for recording data and making transactions, we need to build distributed 
applications which execute autonomously in the network to satisfy the constraints and agreement of involved 
participants.  The smart contract is written in the Solidity language and running in the DLT network. An example of 
a smart contract is shown in Figure 34 below:  
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Figure 34: Smart contract of recording sensing data. 

 

A typical smart contract consists of various information, for example, the owner of the devices, data, and 
predefined rules by system administrators, agreements between involved components in the system. Based on 
the scenario and specific requirements, the content of a smart contract will be written and run autonomously in 
the network.  communicate with smart contracts, Ethereum provides an API which allows DLT clients to connect 
and communicate with smart contracts based on the predefined rules. DLT-nodes which want to publish data to 
the distributed ledger or instruct smart contracts for doing a task, first need to generate a DLT transaction format 
and sign it with JSON-RPC as:  

 

Figure 35: Signing a transaction. 

After signing, the transaction can be sent to the distributed ledger via sendTransaction as below:   
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Figure 36: Sending a transaction from clients to distributed ledger. 

 

The metadata of transaction shows the address of sender and destination, the gas fee to make the transaction, 
and the (hashed) data. Any human customer of the system (e.g., the one asking for a manufacturing task in UC1 or 
the one renting the tractor in UC3) can query the data recorded in the distributed ledger by using the transaction 
hash or transaction ID as well as the whole block ID if needed.  

 

Figure 37 Querying transaction details. 

 

Integration with the SAP is shown in 2.4.1. 

2.5 Infrastructure Management Components 

2.5.1 EDGE MANAGEMENT 

2.5.1.1 EDGE ORCHESTRATOR 

The Edge Orchestrator is described in D4.1. It is a software component, which uses multiple other components. In 
the following, we describe the test and integration concepts for those components. 

The Edge Orchestrator itself follows a microservice architecture. The single services provide specific system 
functionality. For example, we have services for hosting the API, the database, the input processing and many 
other system services. We are currently not following a strict test process to guarantee the functionality, however, 
we support different test cases, which include relevant components tests, so the integrity of the system can be 
checked. How these are integrated into a CI/CD pipeline is not yet decided.  

The API, which is relevant to integrate the Edge Orchestrator with other systems within IntellIoT, is available as an 
OpenAPI specification. Client applications can use this document to generate client code for various programing 
platforms. The specification can also be used to generate test servers to facilitate the development of client 
applications. The software suite of swagger.io provides different tools to enable integrations. For example, with 
swagger codegen code can be generated for client as well as server applications. If required, a mock server of the 
Edge Orchestrator can be deployed as a test platform. It has to be kept in mind that a productive system, accessing 
physical devices, cannot be provided for general tests. Accordingly, we will schedule live tests during IntellIoT’s 
integration workshops, e.g., during a plenary meeting. 
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Other components, as the Edge Manager, will be exclusively used by the Edge Orchestrator in a remote-controlled 
fashion. As this component is not used by external systems, no distinct integration or test plans are foreseen. The 
testing will be covered by the test concepts of the Edge Orchestrator. 

Edge Devices are managed by the Edge Manager and won’t need specific integration and testing concepts either.  

Edge Apps are specific components of IntellIoT. Test concepts of Edge Apps will be the responsibility by the Edge 
App owners. However, we provide an Edge Deployment Tool, which takes specifications as input and outputs a 
configuration, which can be directly deployed within Edge Infrastructure. This means, if Edge Apps are on-boarded 
or updated, the process of deployment on a live system is widely automatized. 

2.5.1.2 EDGE MANAGER 

The Edge Manager is an off-the-shelf component used by the Edge Orchestrator. The component itself has 
product-grade and accordingly need not to be tested explicitly. We focus on the testing of the integration of the 
Edge Orchestrator with the Edge Manager. Here, we implemented regression tests to identify potential issues, 
which could lead us to incompatibilities due to software updates of the edge manager or the operating system of 
the edge devices. 

2.5.2 DYNAMIC NETWORK MANAGEMENT 

2.5.2.1 TSN CONTROLLER 

The TSN controller is an edge application realized mainly in Python and JavaScript. It receives so-called 
communication service requests, also known as stream requests, via its northbound interface. In IntellIoT’s 
manufacturing use case, this HTTP-based interface will mainly be used by the edge orchestrator. For test 
purposes, any HTTP client, e.g., Postman8, can be used, see e.g., Figure 38. Additionally, a Web UI is available for 
convenient manual testing, see e.g., Figure 40 and Figure 41. A description of the interface is given in in 
https://gitlab.eurecom.fr/intelliot-project/networking/tsn-controller and valid requests are available as a 
Postman collection and in Swagger. 

To test the TSN controller, a testbed is available at the Siemens site in Munich Perlach. The TSN controller gathers 
topology information via LLDP and netconf and presents topology information in the Web UI (Figure 39) and via its 
HTTP interface (Figure 40, Figure 41). In both cases, information about available resources and resources already 
reserved for embedded streams are given. As a first step to test the TSN controller, we manually check the 
correctness of this information in the Web UI and via the HTTP interface. 

 

 

 
8 https://www.postman.com/  

https://gitlab.eurecom.fr/intelliot-project/networking/tsn-controller
https://www.postman.com/
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Figure 38: Topology view with stream information 
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Figure 39: Topology view with stream information in Web UI. 

For a standalone test, we send communication service requests, i.e., requests to embed streams, to the TSN 
controller via its HTTP API and Web UI, see Figure 40. We then request the TSN controller to compute the schedule 
and embed it to the devices. We will send feasible and infeasible requests, like e.g., the request for a stream called 
“Dana” in Figure 40, where we requested an infeasible end-to-end latency of only 20 nanoseconds to demonstrate 
that the feasibility checks function as intended. 
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Figure 40: Communication service request via the Web UI. 

For feasible requests, we first check if the computed QoS parameters are within the requested ranges, e.g., using 
the Web UI as shown in Figure 41.  



ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

56/85 

 

 

Figure 41: Communication service details in Web UI. 

To check whether the computed schedules were configured in the devices properly, we use the Siemens-
proprietary “TSN test app” to measure the real end-to-end delay for computed and embedded streams. For this 
manual test, we start the TSN test app with the parameters given in the stream request, e.g. cycle time 1ms and 
frame size 128 Bytes for the stream called “Dana” in Figure 41, and the additional parameters computed by the TSN 
controller, e.g. the transmission offset on the end station sending the stream, see Figure 42. Instead of manually 
transferring the parameters to the test app, we can start the test app on all concerned end points in so-called 
agent mode, mark the stream(s) to test in the web-UI and klick the “Test”-button, see Figure 41. The network 
controller will then send the required parameters to the test app agents via a socket connection and start the test. 

 

Figure 42: TSN test app, sender side. 

The TSN test app on the receiver side Figure 42 provides statistics about delay, jitter, and packet loss of the test 
packets sent according to the configured stream parameters. With this we can easily check if the actual QoS 
parameters of the requested streams match the requests. Please note that the displayed frame length seems 
incorrect at the receiver, because the Linux network stack has removed the VLAN tag before the test app receives 
the packet and computes the packet length. 
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… 

 

Figure 43: TSN test app, receiver side. 

If the test has been started via the TSN controller’s web-UI, the test results can also be observed directly in this 
web-UI, including a graphical representation of the results, see Figure 44. 

 

Figure 44: Test results displayed in TSN controller’s web-UI 

An additional feature to exclude malicious nodes from any communication has been developed and is available on 
supported devices. 

2.5.2.2 COMMUNICATION RESOURCE MANAGER 
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The 5G Communication Resource Manager is an IntellIoT component aiming at controlling the communication 
resources allocated by the 5G network. Following the architecture description of the Mosaic5G FlexRIC and FlexCN, 
the 5G Communication Resource Manager is an xApp and controls the FlexRAN/FlexRIC and LL-MEC/FlexCN 
components to enable dynamic 5G slice creation, resource optimization as well as dynamic adaptation. It is 
deployed by the Edge Orchestrator component in the context of UC1. Specifically, it is the responsible of opening, 
managing, and closing 5G RAN. The FlexRAN/FlexRIC/LL-MEC/FlexCN as well as xAPPs are software codes 
operating on any off-the-shelf laptop or PC supporting containerization (docker, kubernetes) available from 
https://gitlab.eurecom.fr/mosaic5g. 

The Communication Resource Manager communicates with the LL-MEC/FlexCN over an HTTP API as illustrated on 
Figure 45 (for LL-MEC).  Similarly, the Communication Resource Manager communicates with the FlexRAN/FlexRIC 
over an HTTP API as illustrated on Figure 46 (for FlexRAN).  

 

Figure 45. LL-MEC HTTP API available to the communication resource manager. 

 

https://gitlab.eurecom.fr/mosaic5g
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Figure 46. FlexRAN HTTP API available to the communication resource manager. 

During Cycle 1, a local setup with a simulated radio-level environment has been developed (and available for further 
testing during Cycle 2) for testing the initial implementation. Initially, the slicing management was supported by 
the FlexRAN API, available at the beginning of the project, and this has been extended to theFlexRIC API during 
Cycle 2.  

1. There is a default slice that any new UE is subscribed to, and all UEs share these resources equally, in a 
best-effort manner. Beyond the default slice there will also exist other slices meant to be tailored towards 
the needs of the UEs. These slices are meant to ensure that UEs with specific needs can have a guaranteed 
set of resources like bandwidth allocated to them, independent of the number of UEs connected to the 
network. These slices are referred to as custom slices. 

2. The following functionality is available and has been tested in Cycle 2:reating a network slice by requesting 
a set of resources for a user through choosing its Radio Network Temporary Identifier (RNTI) (i.e. a pseudo-
random ID that is generated and granted to a UE). The slice created only applies in the downlink, as uplink 
slices have not yet been implemented on the gNB. Upon creating a network slice an identifier is returned 
identifying the slice. It works by creating a HTTP GET request. 

3. Removing a network slice. It works by using a HTTP DELETE request. In this form the slice ID must be sent 
along with the request.  

4. Associating a UE, or new UEs to an existing slice by using the slice ID and the RNTI of the UE to add. This 
will mean that the resources are to be shared between all occupants on a slice. 4. When creating a slice 
one of the desired inputs has been a requested bitrate that should be available on the slice. This has been 
implemented by monitoring the radio link quality and allocating a set of physical resources to ensure that. 
When changes to the radio link occur, a reallocation may occur to ensure the slice guarantee. An example 
of this is visualised on Figure 32. This is done with a frequency to ensure the guaranteed bitrate is upheld. 

5. Taking an existing slice configuration, it can be updated to support a different requested bitrate. 
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6. Requesting information on a specific slice by inputting its slice ID, or by requesting all the currently active 
slices that are being supported by the BS. 

Some of these functionalities are directly exposed to be used through HTTP request, while others happen in the 
background of actively used for the creation and upholding of a slice definition. The interface with the 
Communication resource manager has been designed and implemented as a python-flask server and by using 
swagger for interface design. Interaction is with a set of predefined interfaces that take certain inputs to create, 
delete, or get information on a network slice. 

2.5.2.3 5G RAN CONTROLLER 

The 5G RAN controller is implemented in OAI as FlexRAN for 4G+ or FlexRIC for 5G RAN architectures. FlexRAN 
connects to OAI eNB to retrieve RAN-related data. The FlexRAN agent has a northbound and a southbound API. 

The Northbound API is implemented as an HTTP API and provides the following HTTP endpoints. The SouthAPIs is 
implemented as: 

• GetConfig – retrieves 4G/5G RAN configuration, such as UL/DL RAN, DRB (data radio bearers) or 
measurement configurations. 

• GetStat – retrieves 4G/5G RAN statistics, such as Channel Quality Indicator (CQI), SINR/RSSI 
measurements / Localization or UL/DL performance at specific layer. 

• Commands – the most important API, which actuates the 4G/5G RAN according to specific instructions. It 
is particularly used for slice creation and per-slice internal configuration.  

• EventTrigger – the 4G/5G RAN provides to the FlexRAN controller specific information, such as UE 
attachment, Scheduling Request. 

• Control Delegation – a particular function, which delegate control to the 4G/5G RAN to reduce the latency. 
Typical delegations are new 4G/5G or handover scheduler, or updated parameters of the existing 
schedulers or handover algorithm. 

 

Figure 47: Mosaic5G FlexRAN HTTP API. 

Figure 47 depicts the REST API of the FlexRAN controller for a Control API for Slice creation. A full description of 
the FlexRAN API is available https://mosaic5g.io/apidocs/flexran/   

https://mosaic5g.io/apidocs/flexran/
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The southbound interface of the FlexRAN controller is implemented according to a Google ProtoBuffer. It however 
is an internal API which is not exposed outside the FlexRAN component. The FlexRAN southbound API is available 
https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html. 

The OAI 5G RAN evolved to support O-RAN E2 agent and the respective APIs. Accordingly, Mosaic5G replaced the 
FlexRAN agent by a FlexRIC agent, which provides mostly the same HTTP APIs on the northbound interface but 
replacing the FlexRAN by the E2 API on the southbound interface. 

2.5.2.4 5G LOW LATENCY MEC 

The main MEC service provided by the 5G low latency MEC is the Radio Network Information Service (RNIS). It is a 
multi-microservice docker service consisting of three functions: 

• RAN data collector – it retrieves data from the 5G RAN over the FlexRAN API. As function of what is 
requested, it can also actively request specific RAN data.  

• Database – the database stores RAN data for faster retrieval. 
• Broker – A HTTP server which exposes HTTP APIs to POST or GET specific RNIS data. 

Figure 48 illustrates the RNIS service between the 5G RAN and a consuming application, which can be either the 
Communication Manager or the Edge Controller. FlexRAN is specific to OAI 4G+ architecture and evolved toward a 
O-RAN compatible E2 agent. However, the RNIS API will not change and will hide the underlying RAN (5G or 4G+).  

 

Figure 48: Mosaic5G FlexRAN-based RNIS service. 

 

2.5.2.5 5G NETWORKING MONITORING 

The 5G network monitoring can be done either by the RNIS service if monitoring is required as actuation. However, 
if monitoring is required also for statistics and visualization, elastic search technologies is provided by this 
component. It corresponds to an Elastic Monitoring component, which exposes Elastic Search APIs to enable or 
disable an Elastic Search endpoint and connects to Elastic technologies webservices, such as Kibana or Grafana. 

The ElasticMonitoring application uses FlexRAN or Flex RIC E2 APIs on a southbound interface to obtain RAN 
statistics and provide an HTTP API on the northbound API to configure the required statistics and the endpoint to 
a running ElasticSearch instance.  

https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html.
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Figure 49: Mosaic5G FlexRAN-based ElasticMonitoring HTTP API. 

 

The HTTP API corresponding to enabling ElasticSearch endpoints as shown in Figure 49 is available at 
https://mosaic5g.io/apidocs/flexran/#api-ElasticMonitoring. A Mosaic5G FlexRIC-based monitoring component, 
supporting 5G RAN and compatible with O-RAN is under implementation. The North API will be extended with new 
E2 features from O-RAN.  

  

https://mosaic5g.io/apidocs/flexran/#api-ElasticMonitoring.


ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

63/85 

2.5.2.6 PRIVATE 5G CORE 

The private 5G core is a set of microservices representing 3GPP 5G Core functions and provided by 
OpenAirInterface CN (https://openairinterface.org/oai-5g-core-network-project/). The private 5G core supports 
both 4G and 5G core functions as depicted on Figure 50. It operates as a standalone entity which connects to the 
4G or 5G RAN via the SGW-U/UFP and AMF/SMF/MME entities for user and control plane respectively.  It is 
considered ‘Private’ first as it can operate without commercial cellular operators and second it can connect to a 
private data network (DN/PDN) on the premise it is installed, keeping any communications between the UEs and 
the data network private. 

 

Figure 50: OpenAirInterface 4G/5G Core [source: OAI]. 

 

The OAI Private 5G Core can operate on any off-the-shelf PC supporting containerization (docker, kubernetes). The 
software code can be downloaded from EURECOM OAI GIT repository: https://gitlab.eurecom.fr/oai/cn5g as 
depicted in Figure 51. 

 

https://openairinterface.org/oai-5g-core-network-project/).
https://gitlab.eurecom.fr/oai/cn5g
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Figure 51: OpenAirInterface 4G/5G Core software repository. 

 

The Mosaic5G FlexCN/LL-MEC components interface with the Private 5G Core by reaching the dedicated 5G CN 
microservices (e.g. UPF, SMF, AMF, RNF) to dynamically adjust 5G CN functions to the requirements of higher 
services and applications. 

2.5.2.7 5G RAN 

The 5G RAN represents the wireless domain between a 5G User Equipment (UE) and a 5G base station (eNB/gNB). 
The 5G RAN is provided by OAI 5G RAN (https://openairinterface.org/oai-5g-ran-project/). The 5G RAN can operate 
either in non-standalone (NSA) or standalone modes, where the 5G RAN (eNB/gNB) would connect to a 4G Core or 
a 5G Core (respectively), as illustrated on Figure 52. 

https://openairinterface.org/oai-5g-ran-project/
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Figure 52: OpenAirInterface 5G RAN NSA and SA architecture (source: OAI). 

 

The 5G RAN is a Software-Defined-Radio (SDR) architecture where RAN functions (RRC, PDCP, RLC, MAC, PHY) are 
implemented in software and a radio head (RRH) is used to handle the digital/analog and complex signal processing 
operations, including power amplification. The 5G RAN software contains a UE and a eNb/gNB side, which can be 
downloaded from EURECOM 5G RAN git repository (https://gitlab.eurecom.fr/oai/openairinterface5g/). 

A 5G RAN UE is composed of an off-the-shelf 5G sub-6Ghz radio module connected to an off-the-shelf laptop 
containing the OAI 5G RAN UE software code, as illustrated on Figure 53. 

 

Figure 53:Illustration of the 5G RAN UE radio unit. 

The 5G RAN eNb/gNB software code includes in addition to the 3GPP RAN functions (RRC, PDCP, RLC, MAC, PHY) 
a FlexRAN/E2 agent connected to the FlexRAN/FlexRIC module over a protobuf (FlexRAN) or O-RAN E2 API 
(FlexRIC). Accordingly, the 5G RAN can be dynamically re-configured or RAN-related information can be reported 
to the FlexRAN/FlexRIC component for dynamic RAN management. 

https://gitlab.eurecom.fr/oai/openairinterface5g/
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A 5G RAN gNB is composed of a commercial sub-6GHz radio module (e.g. AW2S RRH - 
https://www.aw2s.com/RRU.html), connected to a PC containing the OAI 5G RAN gNB software code. 5G 
omnidirectional antennas are connected to the RRU. Figure 54 illustrates a typical RRU used by OAI 5G RAN.  

 

Figure 54:Illustration of the 5G RAN gNB Remote Radio Unit (RRU) unit. 

 

https://www.aw2s.com/RRU.html),


ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

67/85 

3 USE CASE SPECIFIC IMPLEMENTATIONS 
This chapter corresponds to the 5th core group identified in IntellIoT’s architecture (cf. D2.3/Figure 12). We describe 
here the use case specific implementations of components. The specifications of the three use cases are 
described in D2.1. 

3.1 UC1: Agriculture 

3.1.1 TRACTOR CONTROLLER 

The tractor controller deployed in the agriculture use case is the main control component on the tractor and hosts 
multiple edge apps, introduced in the sections above. The tractor controller is a hardware prototype, that is a 
ruggedized component explicitly designed for the off-highway domain, so it can stand the different environmental 
conditions these off-highway vehicles (e.g., tractors, harvesters, but also potentially excavators, etc.) are dealing 
with. The prototype offers two hosts for development, namely a performance host and a safety host. The 
performance host is a high-performance computing solution, like e.g., an NVIDIA chip. The safety host will mainly 
host safety applications ensuring the functional safety of the whole system. An example of a safety host can be an 
Aurix host. The different hosts are combined using a switch, to enable interaction and communication between 
the two different hosts. A schematic overview of the solution is provided in Figure 55. 

 

Figure 55: Schematic overview of the Tractor Controller. 

The tractor controller prototype supports a Linux Ubuntu platform and will run ROS Melodic for hosting the 
different apps on the platform. The tractor controller will support a Docker environment, enabling to develop, 
deploy, and run applications with containers. It provides the ability to package and run an application in a loosely 
isolated environment on a given host, being in this situation the host on the tractor controller.  Docker uses a client-
server architecture, where the client talks to the Docker daemon, which does the heavy lifting of building, running, 
and distributing the Docker container. 

To test the tractor controller as an individual component, a test setup has been created at the TTControl site in 
Vienna. The platform is connected to a power supply and a debug board (via a vehicle connector cable). The debug 
board enables a connection to the controller and provides the possibility to access all vehicle connector interfaces 
(like e.g., Ethernet or CAN interfaces). With a remote connection (SSH), the developer has direct access to the 
platform via a command window. A monitor connected to the controller provides feedback to the developer and 
debugging possibilities. 

FAKRA GMSL 2 IN HSD FPD Link III 
OUT

A U T O M O T I V E  

C O N N E C T O R

BroadR-Reach

100BASE-T1

CAN-

FD
AN/DIG 

In

Freq 

Out
FlexRay

C A M E R A / V I D E O  

C O N N E C T O R S
D A T A  C O N N E C T O R S

USB 3.11000BASE-TRS232
HS 

Out
Freq In

Safety Host

Performance Host

HDMI OUT

Switch



ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

68/85 

 

Figure 56: Test setup for tractor controller. 

 

The system is first tested if it is up and running. 

 

Figure 57: tractor controller Ubuntu bionic console. 

 

After this, the platform has been connected to the internet, for installing additional packages. The Host controller 
runs the following commands to enable IP forward (sysctl net.ipv4.ip_forward=1), to set up the necessary rules in 
the iptables. 

 

Figure 58: Tractor Controller setup IP tables. 

 

On the platform, it needs to be made sure that the default gateway is set to the eth interface of the connected PC. 
To test and validate the connection, the system will try to ping the internet (e.g., ping 8.8.8.8). 
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The Docker functionality has been tested by checking if it has been correctly installed and a test hello-world 
application has been deployed and executed to make sure that everything runs correctly and smoothly. 

 

Figure 59: Functionality testing of Docker with hello-world app. 

 

The tests that will be used in the following phase of the use case are integration and functionality tests of the apps 
that will be deployed and hosted on the controller. Additionally, tests will be performed in the upcoming periods 
for integrating the controller on the physical tractor and get the required data from the tractor to the apps hosted 
on the controller. Different interfaces will be required to support all the functionalities of the different apps that 
will be hosted. These will vary from WebRTC (for streaming video data to the human operator), MQTT for 
exchanging data between the client apps on the controller and the server apps on the MEC) and potentially other 
interfaces that are still under definition. 

As an example of testing apps on the controller, the DLT app from partner AAU is considered. For running and 
testing the DLT application on the controller, docker-compose, NodeJS and Python3 libraries are required. The 
missing packages are installed with: 

sudo apt install docker-compose (respectively nodejs and python3) 

and/or check installed version with docker-compose –version 

The DLT test application can be found on the IntellIoT Gitlab under: https://gitlab.eurecom.fr/intelliot-
project/security/distributed-ledger-technology. To run it on the controller, one has to clone the sim-dlt-net 
directory on the controller and run the DLT manager for testing. 

 

Figure 60: tractor controller runDLT manager. 

The other applications that will run on the controller, are being validated at the moment and individual tests for the 
applications are being performed. Later, in the project, these applications will also be integrated on the controller 
and a complete test of the overall integrated system will be performed. 

https://gitlab.eurecom.fr/intelliot-project/security/distributed-ledger-technology
https://gitlab.eurecom.fr/intelliot-project/security/distributed-ledger-technology
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On the performance host (as depicted in Figure 55), the different applications are deployed. The performance host 
is equipped with a Linux Ubuntu environment, hosting a Nvidia Jetpack SDK. On this, multiple tools are running 
that support the hosting and development of applications on the tractor controller. The Robot Operating System 
(ROS) is also integrated on the platform for controlling the eTractor (see Figure 61). 

 

Figure 61: SW Architecture for deploying applications on the tractor controller, supporting ROS 

When writing of the deliverable, the following applications are hosted on the tractor controller: 

• Intrusion Detection System (IDS) Client, that monitors the network connection between the tractor and 
the 5G MEC, and potentially also between other different entities in the field. These could for example be 
other tractors, harvesters or potentially drones.  

• Distributed Ledger Technology (DLT) Client, that stores the current position of the tractor (GPS 
coordinates) using Blockchain technology to track if the tractor actually traversed the trajectory that was 
defined for it. 

• Infrastructure Assisted Knowledge Management (IAKM) Client, which identifies potential AI models 
required by an agent according to specific semantic, as well as support the training of AI models. 

The AI Client, for bypassing (unknown) obstacles in the field, will be included later during the final integration phase. 

Furthermore, the controller functions as the gateway between the tractor and the HIL application, where the 
control messages from the HIL application are sent to the tractor via the tractor controller. The tractor controller 
supports 5G connectivity, through connecting a 5G dongle directly to the controller and being capable of receiving 
the messages sent over the 5G infrastructure (see Figure 62). 

All these clients running on the tractor controller interact with their respective servers, which are located on the 
5G MEC, exploiting the 5G infrastructure. These individual solutions have been tested separately by the partners 
who have developed them. After extensive testing of these solutions and confirmation of correct operation, they 
were made available for integration on the tractor controller. The integration was performed by partner TTC, in 
close cooperation with the individual partner and test scenarios were developed for each individual solution to 
guarantee that the solution was working properly on the tractor controller.  

 

Ubuntu

JetPack SDK

Software Applications

App1
App2 App3 App4

Robot Operating 
System (ROS)



ICT-56-2020 “Next Generation Internet of Things”; Grant Agreement #957218 
D5.4: Integrated IntellIoT framework & use case implementations (final version) 
Dissemination level: Public 

 

 

27/09/2023  

 

71/85 

 

Figure 62: 5G connectivity to the tractor controller. 

3.1.2 INTEGRATION WITH THE AGRICULTURE AI MODELS 

2.2.4The objective of the Agriculture AI model is to provide maneuverer control decisions to the tractor controller 
upon facing obstacles while the tractor navigates through the waypoints.  

Input: The input of the Agriculture AI model is a sequence of visual data from the camera mounted on the tractor. 
This data consists of 3D point cloud as well as a 2D projection corresponds to RGB video frames and information 
of the obstacle and tractor positions over time instances. The input is pre-processed to filter out the most 
informative data to be fed into the AI model. 

Output: The inferred output of the AI model corresponds to the tractor control decisions at each time instance that 
are consist of linear and angular velocity components normalized by predefined maximum velocities. In addition, 
a confidence measure of the inferred control decisions is calculated to identify the need of retraining and/or 
escalating to a human operator. 

Data Repository: The Agriculture AI model uses supervised training, in which, inputs and outputs are accounted as 
a labelled dataset. The training dataset corresponds to the traces of observed visual inputs and control decision 
outputs of each maneuverer sequences is stored on the local storage that can be accessed during Local AI training. 
The traces are named by a unique identifier corresponding to a timestamp of data collection and control decisions 
as shown below.  

[timestamp]-lm-[linear velocity component]-rm-[angular velocity component].jpg 

Test Environment: The training is carried out in a simulated environment and initial testing is carried out in a 
laboratory setting prior to integration. The simulation environment is a Python development environment running 
on a Windows workstation. Here, a testing dataset (a fraction of data is partitioned from the original training data 
to generate training and testing datasets) is stored in a local storage and then randomly selected traces are 
exposed to the Agriculture AI model. Therein, the inferred outputs of the AI model are compared with the labelled 
outputs of the selected trace to evaluate the test accuracy of the AI model inference. The lab setting includes an 
off-the-shelf mobile crawler robot known as “Jetank AI kit” which is powered by Nvidia Jetson nano developer 
module with 16GB eMMC and 4GB RAM. The robot has two motors that could be controlled individually and is 
equipped with an on-board camera. The training data collection and validations are carried with the aid of the robot 
in the laboratory environment illustrated in Figure 63.  
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Figure 63: Laboratory setting of obstacle bypassing AI testing. 

 

3.1.3 REMOTE OPERATOR DEVICE 

In UC1, the HIL Application connects to the ISAR client application on the VR headset, the Oculus Quest 2. This peer-
to-peer connection allows the streaming of the entire HIL Application (and thus virtual content) to the client 
device. As mentioned in previous iterations of this deliverable, the VR environment is beneficial for this use case 
as it provides a fully immersive experience for the user, which closely approximates the real experience of piloting 
a tractor. While described more deeply in D3.3 and D3.7, the movement and control of VR handheld controllers is 
used to allow the human to remotely operate the tractor. The VR controllers of the Oculus Quest 2 are connected 
to each other via Bluetooth signaling. Following transmission of Bluetooth signaling, the HIL Application ISAR plug-
in allows a sending function which sends the control commands onward to the IntellIoT components which allow 
movement of the tractor. This occurs with API calls. 

On the server side, CustomSend objects in the scene in Unity are enabled. ServerApi, ApiConfig, 
ConnectionCallbacks and ConnectionHandle are initialized on the Start, which are not recommended to be 
modified  unless event handler for receiving incoming messages. Currently, a default message (ping) from Unity is 
running based on timer OnTimerElapsed function in CustomSendExample.cs and can be modified to the use case. 
The message to be sent can be assigned under HlrCustomMessage defined under ConnectionApi.cs. And through 
the ConnectionApi, PushCustomMessage the message can be sent to the client. An example to send 
“OpenKeyboard” message on a button press event to Client:  
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Figure 64: Code Sample - Custom Send Function - Server Side. 

 

Incoming messages from the client are received under OnCustomMessageReceived event handler and can 
 be verified and updated further depending on the use case. 

 

Figure 65: Code Sample - Custom Received Function. 

 

On the Client-Side, the message is received (for reference) under: Remote Rendering in ImmersiveAppView.cpp 
under Init function in the callback m_customMessageCallback. Furthermore, messages can be verified or used to 
trigger an event by registering in the register_custom_message_handler of the ConnectionApi. 

An Example to open System Keyboard on the HoloLens based on message from the server side: 

 

Figure 66: Code Sample - Custom Send Function - Client Side. 

 

This triggers function RequestUserInput() in the client to open System keyboard on the incoming message. 
Currently, default message from client (pong) to the server is assigned in the onConnectionStateChanged in the 
ImmersiveAppView.cpp running on timer periodically and can be changed according to the usage.  

To send a message back is similar to the Server-Side code and can be achieved by assigning to HlrCustomMessage 
and using ConnectionApi push_custom_message. 
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3.2 UC2: Healthcare 

3.2.1 SMART DEVICES 

The details of the collection of the data from the smart devices has been described in Deliverable D3.7. Also, the 
clinical requirements and technical requirements as well as the relevance of the data collected has been described 
in Deliverable D1.4.  

The smart devices (sensors) will connect to the Local AI through Bluetooth Low Energy (BLE) at certain periods as 
defined by clinical protocol. The integration layer that connects smart devices with the rest projects framework is 
hosted by Vida24 mobile application. Each smart device exposes BLE services and characteristics and based on 
manufacturers guidelines, Vida24 mobile application retrieves encrypted bytes and convert them to actual values.  

Each smart device (sensor) is regularly connected to the Local AI through Bluetooth Low Energy (BLE), as defined 
by the clinical protocol. The frequency at which each enrolled patient has been instructed to establish connection 
between sensor and Local AI for the transmission of biological parameter measurements is device-specific and is 
described in detail below: 

a. Pulse oximeter (oxygen saturation and heart rate): Twice daily at rest, as well as at every exercise session; 
b. Blood pressure monitor (systolic/diastolic blood pressure and heart rate): Once or twice daily, depending 

on each patient’s clinical profile (non-hypertensive and hypertensive status, respectively); 
c. Weight scale (body weight): Once daily; 
d. Thermometer (body temperature): Only at the occurrence of symptoms suggestive of an acute infection; 
e. Smartwatch (physical activity in steps / heart rate): At least once daily, for the transmission of aggregated 

data. 

The actual frequency at which connection between sensor and Local AI is established –and thus the actual size of 
the inputs to the Healthcare AI Models- is additionally dependent on: 

a. Enrolled patients’ compliance to the aforementioned instructions; 
b. Structural and functional integrity of each smart device; 
c. Robustness of wireless internet connection at the time of data transmission. 

3.2.2 INTEGRATION WITH THE AI MODELS 

When it comes to the AI models, two main usages can be identified: (1) development of pre-trained models and (2) 
post-deployment inference and training on those models. 

3.2.2.1 MODEL DEVELOPMENT 

AI Models are pretrained by researchers in a development environment that includes python with several relevant 
libraries, most notable one being the TensorFlow machine learning platform. The researchers have access to a 
retrospective dataset that was extracted at a specific point in time from the Vida24 backend using its REST 
interface.  

When the models show potential and are deemed ready for further training in the field, they are converted to 
TensorFlow Lite (TFLite) format and stored to disk. The conversion to TFLite is important because the Android 
phones that are the deployment target, can only run that framework. Conversion must be performed on the 
development machine, which can handle both formats.  

To ensure that the converted models expose all required interfaces needed for inferencing and training, as well as 
storing and loading of weights, a wrapper was introduced that takes care of this. It can be used to wrap any 
TensorFlow model and provide the mentioned functionality. The correct functioning of this wrapper is tested by 
unit tests. 

3.2.2.2 MODEL INFERENCING 

Models that are to be used for inference will be deployed by means of packaging them into the Android app. They 
will explicitly not be downloaded from the global AI component. This is to ensure that at any moment, there can be 
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no confusion about what model version is used to make predictions. Running model inference is facilitated through 
the Local AI component’s TensorflowAdapter class (see Figure 67: Local AI integration into app). 

3.2.2.3 TRAINING 

The models resulting from the development phase, will be used as starting point for federated learning, as the first 
model version to be distributed by the global AI component during training. It becomes the first “model to beat”. 
The test part of the development dataset will also be reused, becoming the evaluation dataset that determines if 
the newly aggregated model weights that result from local training perform better than the old weights. 

To ease the use of the TFlite models within an Android app, the TensorflowAdapter class is provided by the local AI 
component. This class takes care of mapping the various operations to run inference with the model, train it and 
save and restore its weights. The correct functioning of this convenience class is tested by unit tests. 

 

Figure 67: Local AI integration into app. 

 

To participate in one round of training, as defined and initiated by the global AI component, a federated learning 
workflow is provided through the Local AI component library, through the FederatedLearningJob class. To keep 
the workflow flexible, it will call upon the integrating app to fill in certain steps of the FL process, e.g., storing of 
the model weights, initializing the model structure, perform training on the local dataset. 

Design decisions and their rationale 

Deferring model interactions to the app, rather than putting that directly into the FederatedLearningJob: 

- The FederatedLearningJob takes care of the back-and-forth messaging between Local and Global AI, 
during a round of training. It understands the call order the Global AI expects, as well as the message 
formats. It’s important to note that at this point, no understanding is needed of the underlying machine 
learning framework (e.g., TensorFlow, PyTorch, ONNX, etc.). This is why any such framework 
dependencies have been pushed to the app, so that the workflow remains reusable for all. 

- Different models and will require different pre-processing steps to be implemented. Any such logic is to 
be implemented by the app. 

- Different apps are expected to make different choices when it comes to data storage. Therefore, the Local 
AI component defers any data storing and loading to the app. 

App provides the execution environment: 

- Since apps may want to choose their own (background) execution mechanisms, the Local AI component 
makes no assumptions about this itself. E.g., an Android app may choose to host the FL job in a 
background service, use the WorkManager and its advanced scheduling criteria (battery, network state, 
etc), or implement its own threading model. 
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Figure 68: Implemented workflow for FederatedLearningJob. 

 

3.2.3 INTEGRATION WITH THE PATIENT DATA REPOSITORY 

The data collected from the UC2 sensors is also needed for analysis by physicians on PAGNI premises. A local 
deployment of Vida24 cloud application to PAGNI dedicated server is required. The procedure started by creating 
a secure VPN connection from PAGNI IT department for Vidavo DevOps engineers to connect and install the 
dependencies on operating system and application level. The next step is to create the correct interfaces to 
expose Vida24 cloud application to the internet to receive data from the mobile application as well as to allow 
physicians to have access on patients' data outside of PAGNI premises. Through the pilot study the necessary 
subset of collected data was sent to the Patients Data Repository through a protected and secure API and a HTTP 
over TLS connection.  

3.3 UC3: Manufacturing 

3.3.1 ROBOT CONTROLLER 

The robot controller is an abstraction simplifying the control of the very flexible UR5 robot arm to a limited number 
of fixed tasks necessary for the manufacturing use case demonstrator. 
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It provides an HTTP interface that allows agents in the HyperMAS and other apps to make the robot perform fixed 
tasks, move it to predefined positions and read out its status / actual position. It controls the UR5 arm via (non-
real-time) TCP commands / URScript. For real-time control of the robot, which is required for the HIL scenario, the 
HIL application will directly interact with the UR5 robot arm. 

The robot’s HTTP interface has been defined together with HSG as the main "users" of it in form of an OpenAPI 
specification, using Swagger. From the Swagger description, a W3C WoT Thing Description has been created to 
enable agents to be programmed against the robot’s affordances. 

The latest version of the interface specification can be found in API Flow for UC 3 9;  Robot Controller 10 contains 
examples of the API usage. 

The implementation of the API has been started using a Node-RED based workflow and it is tested in most parts, 
using the Swagger-internal functionalities. Implementing the robot controller functionality itself is in progress as 
well. 

3.3.2 ENGRAVER APP 

This text addresses the integration of the engraver service edge app with the laser cutter machine as well as the 
milling machine.  

The Engraver App is an edge app, which provides a service interface for controlling the engraving machines. In 
IntellIoT we support two types of engraving: per laser cutter and per milling machine. Both machine types are 
different in nature, but, for the purpose of the manufacturing use case, we covered difference by a uniform web 
interface. 

By December 2021, the Mr Beam lasercutter11 is supported. For the support of the Milling Machine, the same service 
implementation will be used (although it might be instantiated in an own app identity). It is the goal, that the same 
web API interface towards the client (HyperMAS) is used for both laser cutter and milling machine. Depending on 
the parametrization the one or the other machine can be selected. 

The process of engraving of text should be similar on both machine types. It consists of three phases: 

1. preparation 
2. engraving 
3. postprocessing 

Each phase requires service call on the web interface of the engraver service. The web service requests include 
parameters, which kind of machine is used, and which concrete machine (id) is used. Although, we considered that 
each machine type has its own type of engraver service and accordingly machine type might be redundant. For the 
moment, we keep this for flexibility in the future. 

Figure 69 and Figure 70 show the UML sequence diagram of production of a workpiece with the Mr Beam laser 
cutter and respectively with the milling machine. Note that this diagram merely shows one of several possible 
executions since the concrete HTTP queries are only configured at system set-up time using the Web-based IDE 
discussed in Section 4.2.2 and in Deliverable D3.1. 

 

 

 
9 https://docs.google.com/document/d/1qWyrCS9p57yd1aCUA-pawPoA8IAqLt7StHaMDn2nrjw/edit 
10 https://app.swaggerhub.com/apis-docs/danaivach/robot-controller/1.1.0 
11 https://www.mr-beam.org/  

https://docs.google.com/document/d/1qWyrCS9p57yd1aCUA-pawPoA8IAqLt7StHaMDn2nrjw/edit
https://app.swaggerhub.com/apis-docs/danaivach/robot-controller/1.0.3
https://www.mr-beam.org/
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Figure 69: Example workflow of production with laser cutter. 
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Figure 70: Example workflow of production with milling machine. 

 

3.3.2.1 PHASE 1 AND 3: PREPARATION AND POSTPROCESSING 

Phases 1 and 3 include physical actions so that a production process (engraving a text) can be started. This is 
necessary due to the nature of the manufacturing use case. Here work pieces are put into the machine by a robot 
arm before the production can start and picked up by the same robot arm, when the production is finished. 

The phases are differing whether a laser cutter or a milling machine is used. For the preparation of the production 
process with the laser cutter, the lid has to be opened, a table has to be lifted and lowered and a button has to be 
pressed, to start the laser cutter. The post processing includes the same steps in reverse order. In Figure 69, the 
different action of preparation and postprocessing can be deduced. 

For milling machine, the only preparation and postprocessing procedure is to clamp and unclamp the work piece. 
Figure 70 shows the workflow. 

We use actuators on the basis of Tinkerforge elements12. Those are devices, which are able to control the 
mechanics for the actions. They are connected via TCP/IP over Ethernet to the Engraver Service. The Engraver 
Service, in turn, offers a REST façade to expose their functionality to HyperMAS. 

3.3.2.2 PHASE 2: ENGRAVING 

To start the engraving job, the interface of the Engraver app includes a distinct service function. Incoming 
requests are processed by the engraver service in such a way, the engraving can be started by the native interface 

 

 

 
12 https://www.tinkerforge.com 

https://www.tinkerforge.com/
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of the machine. This requires service translation, as well as the preparation of the input parameter in such a way, 
the machine can deal with that. An important capability of the Engraver Service is, that a vector graphics in the 
SVG format is created out of the ascii text input. Here, the text is rendered into path elements, consisting of lines, 
arc and Bézier curves. 

The typical client will be HyperMAS. The web API for managing the engraving hob will be the same for both milling 
machine and laser cutter. These APIs will be expressed in a machine-readable way as W3C WoT Thing Descriptions 
to enable agents to be programmed against them. 

To start an engraving job, a HTTP POST on {{base_url}}/job/text has to be issued. 

An example for the message body is as follows: 

{ 

  "machineType": "laser", 

  "machineId": "laser-1", 

  "text": [ 

    "here comes the text" 

  ], 

  "font": "ABeeZee", 

  "variant": "regular", 

  "fontsize": 76, 

  "positionReference": "center", 

  "maxWidth": 150, 

  "maxHeight": 80, 

  "x": 120, 

  "y": 220 

} 

Figure 71. /job/text example. 

With machineType, the Engraver Service learns which implementation is used. Machine types could be laser or 
milling-machine. With machineId, the concrete machine is identified. Although we have just one laser and one 
miller, we should keep it for the future. The value can be arbitrary for the moment. The value of font describes the 
text font, which is used. variant is its corresponding variant (e.g., regular, bold, italics). The font has to be 
available at the engraver. The values for font and variant must correspond to the file name of the font file. In this 
case, the file name was ABeeZee-regular-esDR31xSG-6AGleN6tKukbcHCpE.ttf. The pattern {{font}}-
{{variant}}-{{whatever}} is used by all available fonts. We use Google Fonts and have 4500 font/variant 
combinations available (~500 different fonts). For practical reasons, we currently support only ABeeZee (regular, 
italics), Abel (regular) and Roboto (regular).  

• fontSize is the size of the font. 
• x, y is the coordinates of the origin of the engraved text in the coordinate system of the machine. 
• positionReference is the origin of the engraving. Possible values are currently northwest, center. 

The value of text is the content to be engraved. It is encoded in an array. Each array element is a line. Currently 
only single line (one array element) is supported. If multi line text will be supported in the future is up to be decided. 
Also, how they are oriented (left, center). The concrete machine has to be configured with respect to its network 
addresses, its working area and the orientation of the coordinate system.  
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The interface to the machine is exposed to the engraver service. The engraver service itself is an edge app, which 
runs on Industrial Edge devices. It is connected via TCP/IP with the engraving machines. The Engraver service will 
start the engraving via HTTP REST and JSON binding. Accordingly, the milling machine has to provide service 
functions to start engraving and to provide information about its status. For the start engraving request, the 
engraver service sends the SVG body plus extra information in a JSON body, which is required for the engraving. 
The SVG includes the representation of the text encoded in a SVG path (PATH tag). The SVG includes also the 
definition of a transformation matrix, so that the text is already translated to its position on the work piece. The 
concrete interface is internal between Engraver Service and milling machine and not further discussed here. 

3.3.2.3 TESTING THE ENGRAVING 

For integration tests, a test instance is available. This instance includes a simulator of an engraving machine, 
which can be used to test protocol interaction. The API is documented as OpenAPI specification, which is tracked 
in IntellIoT’s gitlab environment, and a W3C WoT TD has been created from this. Integration tests with the 
HyperMAS components – both, the HyperMAS Infrastructure and the Web-based IDE for HyperMAS – have been 
successful. 

3.3.3 INTEGRATION WITH THE MANUFACTURING AI MODELS 

The Manufacturing AI model carries out two main tasks: detection of engraving area and calculating the grab spot 
of work pieces. Both of these tasks are facilitated by an additional AI service of detecting crosshair markers. 

Input: Despite of the task (detection of engraving area or computing grabs spot), the input of the Manufacturing AI 
model is an image from the camera mounted over the workbench/engraver/milling machine. This image consists 
of the top view of the workpiece and special markers (crosshair) placed on the surface that are used to determine 
the physical dimensions. The input is pre-processed to filter out the most informative data to be fed into the AI 
model. 

Output: The inferred output of the AI model corresponds to one of the following depending on the task: (I) the 
engraving area corresponds to a circular region (the largest in-circle) with the coordinates of the centre and length 
of the radius or (II) the grabbing location in terms of a tuple corresponds to x and y coordinates and angle referring 
to the grabbing arm orientation. In addition, a confidence measure of the inferred output is calculated to identify 
the need of retraining and/or escalating to a human operator. 

Test Environment: The training and testing are carried out in a simulated environment prior to integration. The 
simulation environment is a Python development environment running on a Windows workstation. Here, a testing 
dataset (a fraction of data is partitioned from the original training data to generate training and testing datasets) 
is stored in a local storage and then randomly selected images are exposed to the Manufacturing AI model. Therein, 
for each selected test image, the inferred outputs of the AI model (both the engraving area and the grab spot 
separately) are compared with the labelled outputs to evaluate the test accuracy of the AI model inference. 

After successful testing, the AI models are deployed in the demo setting as a service that can be accessed using a 
REST API with following web request. 

http://[IP:PORT]/AI_Service/[SERVICE]?storageId=[ID]&cameraHostname=[HOST]&cameraId=[CAMERA] 

[IP:PORT] - IP address and the port of the AI service that is run on the edge server (e.g. "127.0.0.1:8080"). 

[SERVICE] - Defines two tasks computing engraving area and grab spot.  

• [SERVICE]={compute_engravingArea, GET_grabspot} 

[ID] - ID of the storage areas. Using negative number returns a visualization for debugging purposes. 

• Workpiece Storage: ID = {1, 2, 3, 4}. 
• Laser Engraver: ID = 1 
• Milling Machine: ID = 1 
• For testing purposes, use ID={1,2,3,4,5,6} with testing keywords given below 

[HOST] - IP address and the port of the RPi camera (e.g. "127.0.0.1:8080"). 
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• In the Manufacturing setting, currently we are using HOST={camera-storage.fritz.box, camera-
milling.fritz.box, camera-engraver.fritz.box} 

• Use HOST = testimages for testing with the test image instead of contacting the camera. 

[CAMERA] - Defines the camera that connects to the three locations 

• CAMERA = {workpieceStorage, millingMachine, laserEngraver} 
• Use CAMERA = testimages for testing 

Two of exemplary outputs are visualized in Figure 72 

 

Figure 72. Example illustrative outcomes of area detection AI for a workpiece on the engraver (left) and the grab 
point AI of a workpiece on the storage (right). 

3.3.4 REMOTE OPERATOR DEVICE 

UC1 and UC3 utilize similar methods for the operator to remotely operate the IntellIoT targets. The distinguishing 
differences here are in the hardware used. In UC3 the HoloLens 2 is used to provide an augmented reality 
environment. An AR environment superimposes virtual content on the real world, and thus allows the visualization 
of a digital twin of the robot. Additionally, such an environment provides a unique perspective of the robot and its 
motion in the real world, which provides important information about how the movement of the robot will be 
reflected in reality. In order to reach high levels of precision and accuracy required to execute movements of the 
robot, a stylus pen (Holo-Stylus) is used as an AR input device. This device acts as hand gestures would normally 
but allows a higher degree of accuracy in motion detection and control. The Holo-Stylus here connects via 
Bluetooth signaling to a head-mounted-unit on the HoloLens 2. The head-mounted-unit can therefore track the 
motion of the Holo-Stylus to a precise degree, combined with event-based trigger signaling from button presses 
on the stylus. As in UC1, information from the head-mounted-unit is sent to the HIL Application via ISAR driven 
WebRTC streams. From there, TCP/IP protocols allow the transfer of control commands from the HIL Application 
to robot components (e.g., robot controller). 

3.3.4.1 TESTING THE REMOTE OPERATION 
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Test deployments of the remote operation for UC3 and its respective HIL Application and associated components 
have occurred in the previous cycle. Test deployments for the human-in-the-loop robot were met with success, 
largely using local Wi-Fi protocols to mediate the connectivity required. Movement of the Holo-Stylus during 
visualization of the robot enabled precise movements of the robot when needed. Test deployments for the UC1 
tractor have not occurred yet but have been planned to occur. These deployments provided (and will provide) 
valuable feedback regarding specific developments needed for future deployments. Currently this process is 
ongoing to better refine the integration with IntellIoT IoT components. 
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4 CONCLUSIONS 
In this deliverable D5.4 the integration of the components of the overall IntellIoT framework, as designed in the 
architecture definition of D2.6, has been presented, and the usage scenarios of this framework of components has 
been described within the three use cases.  

All components were in detail described in the deliverables D3.1-D3.4 and in D4.1-D4.4 as part of the Cycle 1 
developments, which focused on the definition, implementation and testing of the components. The Cycle 2 
developments of the WP3 and WP4 components were described in deliverables D3.5-D3.8 and in D4.5-D4.8. 
Overall, the combination of these components as a framework has proven as useful for the implementation of the 
use cases. Particularly, the communication and computation infrastructure components have provided useful 
tools to create IoT environments for the three use cases. Then, the trust enabler components have been used in 
all three use cases to secure the respective IoT environments and allow a trusted engagement of the “human in the 
loop” through the developed IoT applications. To enable such “human in the loop” scenarios, the human in the loop 
enabler components could be used and proved their helpfulness. The collaborative IoT enablers were integrated 
to enable the definition of agent-based IoT applications, enable interoperability, and train and execute AI models 
on local and global level. 
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