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1 INTRODUCTION 

1.1 Overview of IntellIoT framework 

The IntellIoT project addresses the main technical challenges related to the support of intelligent edge Internet of 
Things (IoT) that deal with: (1) complex IoT applications which include functions for sensing, acting, reasoning, and 
control; (2) heterogeneous devices like edge computers and resource-constrained devices; (3) and big data from a 
huge number of data sources. In the IntellIoT communication architecture, the wired segment consists of the TSN 
(Time Sensitive Networking) controller and the TSN infrastructure used in a manufacturing plant to connect static 
industrial machinery. The rest of traffic in the network, static or mobile, is handled by the wireless segment, in a time-
varying channel that introduces delays and errors. IntellIoT supports traffic with high data rates and Ultra Reliable Low-
Latency Communication (URLLC), for which 5G (5th Generation) technologies are required1.  

This task has a three-fold contribution to the IntellIoT framework:  

(C1) The research activities within the scope of wired and wireless resource allocation and configurations for 
intelligent IoT environments.  

(C2) The implementation of the communications resource manager for the wireless segment, to be used in the UC 
demos at the end of the project. It consists of an xApp2 integrated in the 5G infrastructure developed in Task 4.2.  

(C3) The implementation of the TSN controller for the wired segment, to be used in the UC demos at the end of the 
project. The goal of the controller is to reserve resources on the TSN infrastructure developed in Task 4.1 and to cut-
off malicious nodes. 

This deliverable, being the final output of Task 4.3 ("Dynamic Network Management"), describes the research and 
implementation tasks related to the allocation and optimization of the communication resources, both wired and 
wireless. The first version of this deliverable, D4.3 “Dynamic Network Management (initial version)”, provided the core 
communication models and research analysis to support the heterogeneity of traffic in IoT environments (C1). 
Moreover, a basic implementation of the communications resource manager (C2) and the TSN controller (C3) were 
described.  

Since the infrastructure management is the basis of the IntellIoT framework, there is a strong interplay between Task 
4.3 (and the content of D4.3) and several other Work Packages (WPs) and Tasks of the project: Task 4.3 receives 
valuable input from Task 2.1 ("Use cases specification & Open Call definition "), Task 2.2 ("Technology analysis & 
requirements specification "), and Task 2.3 (“Architecture specification & interoperability”) concerning the project's 
use cases, the requirements, as well as the architectural design. In Task 2.3, the logical view of the IntellIoT 
infrastructure was defined (see Figure 1), with the two software components of Task 4.3 highlighted in the green box.  

 
1 5G defines URLLC traffic with a target of up to 1 ms delay with a 99.999% of success probability 
2 xApps are applications built on the Radio Access Network (RAN) Intelligent Controller (RIC) that allow controlling and 
optimizing RAN functions and resources. For more details of the baseline 5G infrastructure the reader is referred to 
D4.2 (“5G Network Functionalities”) 
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Figure 1 Logical view of IntellIoT infrastructure (D2.6) 

The infrastructure management documented in this deliverable has been implemented in close consideration of the 
implementation of Task 4.2 “5G network functionalities”, which provides the wireless infrastructure over which the 
wireless optimizations can be built upon. Moreover, there is a relation to Task 4.1 (“IoT/edge infrastructure 
management”), which allocates the computing resources, and the output of Task 4.4 “Trustworthy infrastructure by 
design”, which provides the system trustworthiness. This task is also related to WP3, where the implementation of 
distributed and self-aware IoT applications with Human-In-the-Loop (HIL) relies on a flexible and reliable wired and 
wireless infrastructure. The components developed in this task (communications resource manager and TSN 
controller) are the input to the demonstration and evaluation tasks of WP5 for the remaining of the project.  

T4.3 
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1.2 Objectives and KPIs 

This task contributes directly to the following IntellIoT objective: 

Objective 2: Enable ultra-reliable low-latency communication over heterogeneous networks to enable tactile (real-
time) and contextual (adaptive) interaction between IoT devices, humans, and services.  

The fulfillment of this objective is verified through the following KPIs: 

ID  KPI Description Contributor Description 

2.5 Application-tailored definition and fulfilling of a 

reliability requirement for the three use cases, 

maintained under challenging network conditions 

and based on a data-driven prediction. 

C1 + C2 

(research + 

implementation) 

C1: The research of timing and reliability, specifically for the most challenging VR/AR 

traffic, is described in Section 2.4., including a data-driven prediction to make an 

efficient use of the radio resources. 

C2: The communications resource manager includes functionality that supports the 

configuration of application-tailored requirements, e.g., by estimating the VR latency 

as explained in Section 2.5; further evaluations will be performed in WP5 until the end 

of the project and described in D5.6 

Note: The 5G dynamic network management solutions are universal and therefore 

applicable to the three UCs and any other 5G traffic. 

 

ID Impact KPIs description Contributor Description 

i11.1 Delivery of open-source components for 5G 

communication and dynamic network management 

supporting context-based and data-driven ultra-reliable 

low-latency communication for the NG IoT, as defined 

in Obj. 2. 

C2 

(implementation) 

The Communications Resource Manager is an open source xApp (see Section 

4) 

The functionality is completed, and the initial integration in WP5 is in progress. 

Further integration and testing are planned for the remaining of the project and 

will be part of D5.6. 

The task contributes indirectly to the other objectives, which rely on reliable and adaptive communications.  

Moreover, as part of the intermediate check of the IntellIoT project, the following challenge has been highlighted: 

Collaborative IoT devices that execute de-centralized Artificial Intelligence (AI)-driven applications interacting with 
the HIL. 

The communications infrastructure is an enabler for this challenge: it gives support to the data traffic generated by 
the system aiming at fulfilling the QoS (Quality of Service) requirements of said traffic. Specifically, IntellIoT proposes 
a collaborative paradigm where nodes use communication resources, whose use is optimized in this Task 4.3.  

1.3 Outline 

The research activities of the task are described in Sections 2, 3, 4, 5.1 and 5.2. The last subsection of Section 5, 5.3, 
describes the implementation of the communications resource manager for the wireless segment, to be used in the 
UC demos. Section 6 describes the implementation of the TSN controller. The deliverable is concluded in Section 7, 
where the next steps are identified.  
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1.4 Summary of modifications as compared to D4.3 

As compared to D4.3, we emphasize the following updates: 

• 1.2. Objectives and KPIs: updates of the status of KPIs and verification 
• 2.4.3. AR/VR Data-driven analysis and optimization: new research models and results of data-driven 

optimization for AR/VR traffic 
• 2.5. Implementation of the communications resource manager: description of the functionality, 

implementation, and performance of the communications resource manager 
• 3.2. Selection of TSN features 
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2 WIRELESS RESOURCE MANAGEMENT FOR INTELLIOT 
ENVIRONMENTS 

This section describes the research (C1) conducted on wireless resource management that gives the basis for the 
understanding of the models, tradeoffs and performance of a 5G network for the IoT, as well as the implementation of 
the communications resource manager (C2).  

2.1 Timing and reliability in edge computing 

The conventional approach to measure the timing performance in a wireless system is to consider the packet delay as 
the one and only metric to capture the latency requirements of a transmission. Thus, the end-to-end latency is 
obtained by adding the contribution of the different components to the latency budget and, if the total is above the 
target latency, then each component is optimized separately. In IoT scenarios such as the ones addressed by IntellIoT, 
it is meaningful to consider the joint computing-communication system design and use, beside the end-to-end 
latency, as both metrics reflect the freshness of the information at the receiver. This is motivated by the fact that 
numerous IoT applications like the ones considered in IntellIoT rely on the system transmitting real-time status 
updates of a process from a generating point to a remote destination [22]. Sensor networks, vehicular networks, and 
industrial control are examples of this kind of update process. One example in IntellIoT is the manufacturing plant in 
UC3 where sensors and actuators are connected with a 5G network, or the sensors in the tractor whose information is 
transmitted to the human when he/she has to remotely control it (UC1). Another example in the agriculture domain (as 
an extension of the current scope of UC1) is to consider a fleet of self-driving tractors sending periodic status updates 
like in a Vehicle to Vehicle (V2V) network.  

For all these cases, the so-called Age of Information (AoI) represents the timeliness requirements by quantifying the 
freshness of the information at the receiver [23]. Specifically, the AoI computes the time elapsed since the latest 
received update was generated at any given moment in time, i.e., how old is the last packet received by the destination. 
Using AoI to measure the performance of the system can capture exactly the timespan between the process being 
measured and the user’s view. Furthermore, AoI is often complementary to latency, as it requires a balance between 
update frequency and congestion, while latency always benefits from a reduction in traffic, i.e., fewer updates being 
sent. 

An example of the AoI dynamics is plotted in Figure 2: the AoI grows linearly over time, then decreases instantly when 
a new update arrives.    
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Figure 2. AoI dynamics. The packets are generated in t1, t2, … and received at the destination at t’1, t’2, …. The inter-arrival 
time is the time between the generation of two packets at the source. System time is the sum of the queueing time and 

the service time.  

Another age-related metric is the peak AoI (PAoI), which is the maximum value of AoI for each update, i.e., how old the 
last packet was when the next one is received by the destination. As in other performance metrics of communication 
systems, the PAoI is more informative than the average age when the interest is in worst-case analysis. Edge 
computing in general is a good approach for information-age-sensitive IoT applications, as the transmission of sensor 
readings to a centralized cloud may require too much time and increases uncertainty, while processing data closer to 
the sensor that generated them can reduce the communication latency and thereby the overall AoI at monitoring or 
control process [24]. 

We chose therefore AoI and PAoI as two relevant timing metrics for the project. As the IntellIoT scenarios require high 
reliability, analyzing the average age (average AoI or average PAoI) is not enough, however: The tail of its distribution 
is also a very important parameter, as it directly affects the risk of control system failures like the tractor in UC1, the 
robot arm in UC3 and the doctor notifications in UC2. All of these must be bounded to low levels for a good system 
performance.  

A more involved example of an age-sensitive application in IntellIoT is the HIL, which involves a loop communication 
with the transmission of Virtual Reality (VR) video from the tractor or the robot arm to the human, the human’s reaction 
to this input data, and the control feedback to the tractor or the robot arm. Here, we need to go one step further and 
consider the Age of Loop (AoL), to capture the loop timing relations. In [8], this metric is defined as the time elapsed 
since the piece of information causing the latest action or state (depending on the selected time origin) was generated. 
The AoL is then used by the authors to learn the control requirements of a Wireless Network Control System (WNCS) 
and to optimize the network resources. Depending on which direction is considered first to define the loop, Uplink 
(UL)3 or Downlink (DL), we can define a UL AoL or a DL AoL, and we can observe the average and/or peak values. For 
example, these family of new metrics can be used to design a power allocation policy for the UL by observing the 
current UL AoL status. Likewise, we can define a modulation coding scheme for the DL transmissions by observing 
the DL AoL. [9] uses a classical inverted pendulum system model, which is a widely used benchmark problem in the 
control and Reinforcement Learning (RL) domain; however, the same principles can be applied to the IntellIoT HIL loop. 

Figure 3 shows the behavior of the AoL in these scenarios, where the slave is the tractor in UC1 and the robotic arm in 
UC3.  

 
3 UL in the mentioned reference [8] is from the sensors to the controller and DL from the controller to the sensors 
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Figure 3. Example of HIL traffic and the AoL metric 

The second set of metrics are suitable when the throughput and reliability of the communication must be observed. 
One of these metrics is the Effective Capacity (EC), which has been widely used to understand the tradeoff among 
reliability, throughput, and latency in buffer-aided communication systems.  Specifically, the EC of a wireless system 
with a time-varying channel expresses the maximum achievable throughput under some QoS requirements. 
Mathematically, the EC of a channel process is: 

 

where  is the QoS exponent and R[n] is the accumulated channel rate until time n, i.e., 𝑅[𝑛] =  ∑ 𝑟[𝑚]𝑛−1
𝑚=0 , and r[m] is 

the instantaneous channel rate. The physical time is divided into units referred to as symbol periods. A usual 
transmission strategy for broadband communications is to have the channel rate r[m] adapt to the channel variations 
and fulfill a given reliability requirement.  

The QoS exponent  captures the statistical QoS guarantees given in the form of a duplet (Dt; ), where Dt is the target 
delay and  is the probability of exceeding Dt. A small value of  corresponds to a system that can only provide a looser 
QoS guarantee, while a larger  leads to more stringent QoS requirements. Therefore, the EC of the channel decays 
with the QoS exponent, since the maximum supported arrival rate decreases as the QoS requirements become more 
stringent. Specifically, the relation of  with the duplet (Dt; ) is given by: 

 

Where Pr(𝑞 > 0)  is the probability of not having an empty queue.  

The EC is relevant for broadband and other high-rate traffic supported by buffering and with latency and/or reliability 
requirements. For example, the transmission of VR/Augmented Reality (AR) traffic involves the transmission of real-
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time high-rate video and control commands with very high reliability. Other examples of critical traffic within IntellIoT 
are the exchange of ML/A models in decentralized learning and messages within the trustworthiness pillar. In this 
project we use the EC in the theoretical comparison of orthogonal and non-orthogonal strategies, as explained in 
Section 2.2.   

Finally, since the definition of URLLC as one of the connectivity types of 5G NR, there has been a lot of focus on the 
reliability-latency performance. The well-known 10-5 reliability requirement of this kind of traffic is defined as the 
probability that a data of size D (usually small) is successfully transferred within a time period T (usually 1 ms). For 
example, a general URLLC reliability requirement for one transmission of a packet is 1-10-5 for 32 bytes with a user 
plane latency of 1ms. The generalization of this definition is the reliability-latency curve depicted in Figure 4, which 
gives the probability of communication interface i achieving a latency deadline 𝑙, i.e.,  

 

The probability of error of such interface i (i.e., the probability of outage) is given by 

 

 

Figure 4 Reliability-latency curve 

Timing in edge computing: a queueing analysis 

Edge computing is gaining traction in several sectors such as telehealth, agriculture, manufacturing plants and 
robotics. Edge-driven services require strict control performance guarantees, which are only possible by carefully 
designing the communication system and the timing and reliability tradeoffs between control and communication. We 
aim at characterizing the timing and reliability tradeoffs in edge computing, with the interplay between the actual 
communication of the necessary data and the computation at the end. Limiting the AoI is a critical requirement which 
can influence the choice between local and edge-based computation [9] for IoT nodes. The problem becomes even 
more complex when considering multiple sources and different packet generation behaviors, along with limited 
communication capabilities [10]. 

We model the network as a tandem queue with 2-nodes, i.e., two queueing systems connected in series, where the 
first system represents the communication link and the second one represents the computing-enabled edge node and 
its task queue. Figure 5 shows an example where the communication buffer at the sensor and the task queue on the 
edge computing-enabled BS (Base Station) are the two queues in the tandem. 
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Figure 5. An example of the IoT edge computing use case: the sensor transmits data to a computing-enabled edge node, 
which needs to maintain information freshness  

If the load on the computing-enabled edge node is time-constant, while communication is less predictable due to, e.g., 
dynamic channel variations and random access, then the M/M/1 - M/D/1 tandem queue is an appropriate model. An 
M/M/1 queue is a proper model for the channel if we assume an ALOHA system [11] with perfect Multi-Packet Reception, 
in which [13] the packets are not lost due to collisions and can only be lost due to channel errors. On the other hand, 
computation time is often modeled as a linear function of the data size in the literature [12], and updates of the same 
size would have a constant and deterministic service time; this situation is well-represented by an M/D/1 queue. 
Another option is to consider the computing load as also variable over time, leading to stochastic computing time, and 
represent the two systems by M/M/1 queues with different service rates [14]. 

An example of the AoI dynamics in edge computing is plotted in Figure 6: as in Figure 2, the AoI grows linearly over 
time, then decreases instantly when a new update arrives. Naturally, the age at the destination is never lower than the 
age at the intermediate node, as each packet that reaches the destination has already passed through the 
intermediate node, but the dynamics between the two are not trivial and serve as a motivation for this work. We analyze 
the distribution of the PAoI in a tandem queue with two systems with independent service times and a single source, 
where each infinite queue follows the First Come First Serve (FCFS) policy. We consider both the M/M/1 -- M/D/1 
tandem and the M/M/1 -- M/M/1 case, covering common communication relaying and communication and computation 
scenarios.   

  

Figure 6. The time-evolution of the AoI in a 2-node tandem queue. The age at the destination is plotted in black. The age 
at the intermediate node is plotted in red. Circles indicate the transmission of a packet in each node 
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In our two-systems tandem queue, packets are generated at the first system by a Poisson process with rate  and 
enter the first queue, whose service time is exponentially distributed with rate . When a packet exits the first system, 
it enters the second one, whose service time is a constant D or an exponential random variable with rate . Notice 
that we use conventional queueing terms: in a single queueing system, the queueing time is the time spent in the 
queue, and the service time refers to the time spent in the server, which is our model corresponds to communication 
time. The sum of both is usually referred to as the total system time. In the considered tandem queue, whose diagram 
is shown in Figure 6, the notation is extended as follows. Both queues are of infinite size and are oblivious to the 
content of the packets: There is no preemption of the updates, i.e. an older packet is not removed from the queue 
when a new update comes from the same source. We assume that the service times in the two systems are 
independent. The assumption is realistic for edge computing systems, as the communication and processing are 
usually independent, but not always correct in relay networks; it therefore needs a careful examination. Even if the 
service times are independent, however, the waiting times are not, as the queue at the second system depends on the 
output of the first one.  

Using standard queueing terminology, the packet generation times in the tandem queue correspond to the arrival 
times at the first queue, whereas the receiving instants are the departure times in the second queue. We define the 
total system time for packet i as Ti: When a packet is received, the AoI is equal to Ti,= ri – gi, i.e., the difference between 
the time ri when it is received by the destination and the time gi when it was generated. The PAoI (see Figure 6) is the 
maximum value of the AoI, i.e., the age at the instant immediately before the arrival of a new update. If we denote the 
interarrival (or inter-generation) time Yi=gi-gi-1, then PAoI is given by 

i=ri-gi-1=ri-gi+gi-gi-1=Ti+Yi 

For each system j=1,2 and by abuse of notation, we further define the following values for each of the systems in the 
tandem, which are necessary for the analysis. The system time Ti,j is defined as the sum of the waiting time Wi,j and the 
service time Si,j.  Yi,j is the interarrival time at system j. For j=1, we have Yi,1=Yi, while for j=2 we have to consider the 
generation time at the first queue and the time spent in system 1, i.e., : 

Yi,2=gi+Ti,1 -(gi-1+Ti-1,1)=Yi+Ti,1-Ti-1,1. 

Since the first queue is M/M/1, the system times for the two queues are independent, as proven by Reich [15] using 
Burke's theorem [16] provided each system is in steady state for packet i-1.  

However, the values of Yi and Ti are correlated, and the computation of the PAoI needs to account for this fact. The 
strategy for the analyses is to define an extended waiting time i,j as the difference between the previous packet’s 
system time and the interarrival time at the system, i.e., i,j = Ti-1,j - Yi,j . 

The reason we named i,j the extended waiting time is that Wi,j =[i,j]+, where [x] + is equal to x if it is positive and 0 if x 
is negative. 
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Figure 7. Schematic of the four steps a packet goes through in a tandem queue, highlighting the components of the 
PAoI 

 

 

Figure 7 shows a possible realization of a packet's path through the tandem queue, highlighting the meaning of the 
extended waiting time: in the first system, in which packet i is queued, it corresponds to the waiting time, while in the 
second, in which the packet is not queued and enters service immediately, its negative value corresponds to the time 
between the departure of packet i-1 from the second system and the arrival of packet i at the same system. When W=0, 
we have a negative extended waiting time, as packet i arrives after packet i-1 leaves the system. In general, we have 
i,2=T i-2,2-Y i,2 and the system time for packet i-1 is T i-2,2=W i-1,2+D, while we know the interarrival time Y i,2=S i,1+[-  i,1]+. 

Using the definition of the extended waiting time, the system time and PAoI distribution are calculated for a tandem 
M/M/1-M/D/1 and for a tandem M/M/1-M/M/1. The details of the model and the analysis can be found in [1]. In this 
deliverable, we skip the details of the analysis and show the most relevant numerical evaluations, optimizations, and 
conclusions.    

First, Figure 8 shows the tail of the PAoI distribution, expressed using percentiles, as a function of the arrival rate λ 

packets per unit of time, for an M/M/1-M/D/1 tandem. The plot clearly shows that, to optimize the reliability of the 
communication and computation, the frequency of updates must be tuned carefully to balance between interarrival 
times and latency: Too frequent updates will clog the queues, while rare updates will not be sufficient to track the 
system. The effect of the service time D (i.e., serving at a rate  = 1/D packets per unit of time) in the second system is 
shown in Figure 9: If we optimize the arrival rate, it is naturally better to have a faster computation, but this has 
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diminishing returns if D<1. In this case, computation can become faster and faster, but the real bottleneck of the 
system becomes the M/M/1 network connection. Improving only one of the two elements of the tandem does not 
maximize the benefit to the QoS, expressed as the high percentiles of the PAoI, as the other acts as a bottleneck and 
blocks any improvements. Notice that following classical queueing theory, both the arrival and service rates are 
expressed in packets per unit of time.   

Interestingly, the considerations on the arrival rate are a bit different if we consider the average PAoI instead of the 
higher percentiles, as shown in Figure 8: In general, the optimal value of λ increases, as a higher update frequency is 
often better on average, although the possibility of longer queues makes the tail of the distribution longer. 

 

 

Figure 8. PAoI percentiles versus the arrival rate in the M/M/1-M/D/1 system 
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Figure 9. PAoI percentiles versus the system time in the M/M/1-M/D/1 system   

 

 

Figure 10. Cumulative Distribution Function (CDF) of the PAoI for the M/M/1-M/M/1 tandem for different values of the 
arrival rate 
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Table 1 summarizes the conclusions of this analysis.  

 

Timing in edge computing 

The study of PAoI is particularly important in edge computing systems, which are becoming ubiquitous in 
the IoT due to the timing requirements 

Modeling the system as a tandem queue, it is possible to examine the tradeoffs in the allocation of 
computational and communication resources, as well as to determine the appropriate update frequency to 
optimize the average or worst-case PAoI 

Control systems can rely on these freshness guarantees, enabling reliable remote applications in critical 
domains such as the UC1 Autonomous Guided Vehicle (AGV) trajectory control and the UC3 automated 
manufacturing. 

Table 1. Key takeaways of timing in edge computing 

2.2 Network slicing in 5G NR 

In the wireless segment, IntellIoT is designed to support diverse traffic types that includes VR/AR video transmission, 
tactile feedback, IoT traffic from edge devices and edge infrastructure, Federated Learning (FL) traffic, Distributed 
Ledger Technology (DLT) transactions, etc., using the UL and the DL, like shown in Figure 114.  

 

Figure 11. Example of heterogeneous UL, DL and SL traffic in an IoT environment 

Network slicing is a key feature of 5G for the support of heterogeneous services and requirements, in the form of a 
virtualized technology framework [17]. Significant progress has been made in Third Generation Partnership Project 
(3GPP) regarding the core network and the functional aspects with, e.g., the definition of the network slice identifiers, 
and procedures and functions for slice selection. In the RAN, the conventional approach to slice is to allocate 
orthogonal radio resources to Enhanced Mobile BroadBand (eMBB), with very long payloads; Massive Machine Type 
Communication (mMTC), characterized by the large number of devices and the need of a random access mechanism 
to establish a connection; and URLLC, with small packets and low latency requirements [5]. This is directly applicable 

 
4 The Figure shows also the sidelinks (SL) for direct device-to-device communications, although this is not going to be 
showcased in IntellIoT 
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to IntellIoT UC1 and UC3 when HIL traffic is required: The communications resource manager will allocate two slices, 
one for the broadband VR/AR video and one for the tactile feedback and other control information. Besides, a default 
network slice can carry the rest of the traffic. In UC2, the traffic generated by FL is in principle more homogeneous, 
but the same principles can be applied to ensure the scalability of the solutions and future variations of the UC.  

In the radio slicing, one of the key decisions is the multiple access scheme and specifically the choice between Non-
Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA). In the conventional OMA approach, the 
communication resources for a given user/service are reserved at the beginning and cannot be shared with other 
users. This ensures the QoS but it leads to a waste of resources that is especially noticeable when the traffic is 
intermittent like in many IoT scenarios. In NOMA, by contrast, multiple users can be served simultaneously which allows 
enhanced spectral efficiency. The boundary of achievable rate pairs (in the case of two users) using NOMA is outside 
the capacity region achievable with OMA. This superiority is attained at the expense of increased complexity, 
specifically through the use of superposition coding at the transmitter and of Successive Interference Cancellation 
(SIC) at the receiver.  

The principle of a SIC receiver is to subtract repeatedly the user-decoded signals from the composed multi-user signal 
to reduce the interference, until the signal of interest is decoded. The simplest case is with two users, such that the 
whole set of users is grouped in pairs according to the signal strength level, where one is the stronger (S) and the other 
one is the weaker (W). In uplink NOMA networks, S’ signal is decoded first. In downlink NOMA, the inverse order is 
applied. This is illustrated in Figure 12. 

Uplink
Downlink

SIC to remove S 
message

W

S

W

S

decode W 
message

decode S 
message

Signal
Interference 

W

S

SIC to remove 
W message

decode W 
message

decode S 
message

 

Figure 12. Downlink and uplink NOMA for two users: strong (S) and weak (W) 

As introduced in Section 2.1, the heterogeneous and statistical QoS requirements of services such as VR/AR and some 
kinds of IoT traffic can be well-captured by the EC metric. In the following we see one example of application and 
evaluation of this metric in 5G networks. EC has been applied in many scenarios, including NOMA and OMA [18][19][20]. 
However, the typical approach is to assume a constant arrival process, neglecting the impact of the burstiness of the 
source. The first goal of this research is therefore to evaluate the performance of NOMA and OMA with time-varying 
traffic sources and channels that model the wireless channel and the IntellIoT data sources, respectively. Specifically, 
we evaluate constant traffic (that models the broadband VR/AR traffic) and Poisson- and Bernoulli-distributed traffic 
(to model different intermittent IoT traffic sources). We focus on the UL from, e.g., the edge devices and the cameras 
at the robot or the tractor to the BS.  

System model: We consider a system where U single-antenna users transmit packets in the uplink to a single BS. The 
users are classified based on the channel conditions. The complex channel coefficient is denoted by hu(t), and u(t) is 
the power coefficient of user u. For the NOMA model, the users are sorted such that |h1(t)|2 ≤ |h2(t)|2 ≤  |h3(t)|2 ≤ ... ≤ |hU(t)|2. 
Moreover, the U users are grouped into N pairs. We assume that each pair has a non-overlapping subcarrier and there 
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is therefore no co-pair interference. Without loss of generality, we focus the study on one of the pairs, where s is the 
index of a center-cell user (“strong” user) and w the index of its paired cell-edge user (“weak” user). 

Let xu(t) denote the symbol with zero mean and unit power sent by user u at time slot t. The superimposed signal 
received at the BS is: 

yu(t) = Σu  {s,w} (Pu)½ hu(t)xu(t) + n(t) 

where Pu is the uplink transmit power and n(t) Additive White Gaussian Noise (AWGN) of zero mean and noise power 
sigma. u is the Signal to Noise Ratio (SNR) of user u. 

Each user is modeled with a buffer system, where the buffer is ruled by an FCFS policy, the arrival process A represents 
the traffic source, and the service process R represents the time-varying channel transmission. Time is discrete. au(t) 
and ru(t) denote the instantaneous traffic arrival and service rate, respectively, and A[n] and R[n] are the accumulated 
arrival and channel rate: 𝐴[𝑛] =  ∑ 𝑎[𝑚]𝑛−1

𝑚=0 ;  𝑅[𝑛] =  ∑ 𝑟[𝑚]𝑛−1
𝑚=0 . 

The channel between the nodes and BS is block-fading, i.e., the fading is constant during each fading block, but it 
changes independently from one fading block to another. We assume Rayleigh fading with unit variance and channel 
conditions are mutually independent for all users.  

We do the analysis under the assumption that the arrival and service processes are ergodic and the queue q is not 
congested and converges to a steady state. The delay violation probability is then written as a function of the EC, as 
introduced in Section 2.1, or the EB, specifically: 

 

Where EB()  is the Effective Bandwidth (EB) function of the source and the rest of parameters where introduced in 
Section 2.1. The evaluation requires therefore evaluating the EB and EC functions for the traffic process and rate 
process, respectively, and then finding the crossing point of the two curves [21]. 

 Traffic process: The following traffic models are considered: 

1. Constant traffic. This is the usual case in the literature where the constant traffic source has a rate  and the EB 
is:  

 

This simplifies the general equation and yields: 

 

Where  denotes the crossing point of the EB and EC curves, which is the QoS exponent when both traffic and 
channel rate are a time-varying process.  

This deterministic model is a good initial model for the VR/AR traffic with a CBR encoder, although as we showed 
in Figure 19 we need more advanced models to capture the variability even when a CBR encoder is used.  

2. Poisson traffic. For Poisson traffic of rate , the EB function is 

 

   

3. Bernouilli traffic. An intermittent user can modelled like a Bernoulli process, where a packet of size Ak/p 
arrives with probability p. The EB function of this process is given by 
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4. Independent and Identically Distributed traffic. We can also consider a generic traffic source. If the process is 
i.i.d., then we can apply the Central Limit Theorem and write the EB of a Gaussian process in terms of the mean 
m and the variance , i.e.,  

 

5. Correlated traffic. The expression of the i.i.d. traffic can also be applied to correlated sources if the correlation 
decays sufficiently fast with time. Under these conditions, the cumulative arrival can be divided into blocks, 
such that inter-block correlation is negligible and the variance capturing the intra-block correlation [21].  

Channel process: For the block-fading channel process, we also apply the central limit theorem and write the resulting 
EC of a Gaussian random variable in terms of the first two moments of the rate [21].  

QoS exponent: The crossing point of the EB and EC function gives the QoS exponent. I.e., * is the solution to: EB() + 
EC(-) = 0 

Numerical evaluations: Figure 13 shows the maximum supported queue delay violation probability versus the arrival 
rate of different traffic sources, for the strong and the weak users. The solid vertical line is the Shannon bound with no 
delay constraints. When statistical delay guarantees are imposed, the supported arrival rate must be reduced for the 
system to be able to meet the delay requirements. We observe the negative impact of a time-varying source for which 
the arrival rate is reduced for a fixed violation probability.  

 

Figure 13. NOMA: queueing delay violation probability vs. maximum arrival rate. The frame duration is 1 ms and the 
target delay is set to 3 ms. For the intermittent user, the probability of generating a packet is p=0.5. The power 

coefficients of the strong and weak user are, respectively, 0.8 and 0.2 
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2.3 Radio Resource Management for Machine Learning applications 

The next research component of this Section is related to the use of Machine Learning (ML) for radio resource 
management.  

ML has become one of the key elements in automated system design due to its capability of discovering spurious 
correlations among the system interactions from large amounts of recorded data. In IoT systems, the data sources are 
many distributed edge devices connecting with one another mostly over wireless links. With the limited availability of 
radio resources that are possibly utilized for capacity-hungry and/or ultra-reliable low latent communication services 
that are independent from ML, there exists a challenge of accessing the data that are required for the learning. In this 
view, communication-efficient distributed learning methods are envisioned to offer learning at the wireless edge 
opposed to the classical centralized ML solutions. Among the most popular edge ML model training is Federated 
Learning (FL), in which the goal is to train a high-quality ML model in a decentralized manner, based on local model 
training and client-server communication [25] The design of FL relies on wireless resources for the communication 
between edge device (client) and the Parameter Server (PS) and on computational resources at clients for local 
training, which calls for a resource management solution for learning systems in the IntellIoT scenarios.  

2.3.1 COMMUNICATION RESOURCE CONSTRAINTS 

For the general strategy in which FL uses all clients in each FL cycle, the communication between the PS and clients 
is crucial. However, under limited communication resources, it is vital to utilize them over a subset of client devices 
that can upload their local models to the PS to enrich the learning process. Let 𝑠𝑘(𝑡) ∈ {0,1} be an indicator where 
𝑠𝑘(𝑡) = 1 indicates that the client 𝑘 is scheduled by the server for uplink communication at time 𝑡 and 𝑠𝑘(𝑡) = 0 
otherwise. To schedule several clients simultaneously, one Resource Block (RB) from a set ℬ of 𝐵 RBs is allocated to 
each scheduled client. Hence, we define the RB allocation vector 𝜆𝑘(𝑡)  =  [𝜆𝑘,𝑏(𝑡)]

𝑏∈ℬ
 for client 𝑘 with 𝜆𝑘,𝑏(𝑡) = 1 

when RB 𝑏 is allocated to client 𝑘 at time 𝑡, and 𝜆𝑘,𝑏(𝑡) = 0 otherwise. The client scheduling and RB allocation are 
constrained as follows: 

 

Here, 1† refers to the transpose of all one vector. In this view, the rate at which the 𝑘-th client communicates with the 
PS at time 𝑡 is 𝑟𝑘(𝑡) = ∑ 𝜆𝑘,𝑏(𝑡) log2 (1 + 𝛾𝑘,𝑏(𝑡))𝑏∈ℬ  with the Signal to Interference and Noise Ratio (SINR) of 𝛾𝑘,𝑏(𝑡).  

A successful communication between a scheduled client and the PS is defined by satisfying a target minimum rate. In 
this view, following the definition of the rate and the rightmost inequality of the above constraint, the communication 
requirement is imposed per RB allocation in terms of a target SINR 𝛾0 as follows: 

𝜆𝑘,𝑏(𝑡) ≤ 𝕀(𝛾𝑘,𝑏(𝑡) ≥ 𝛾0)        ∀𝑘, 𝑏, 𝑡. 

Since the maximum number of clients that can be scheduled is bounded by the number of available RBs, the left side 
inequality of the initial communication constraint can be recast as 

1†𝑠(𝑡) ≤ 𝐵. 

Satisfying the aforementioned constraints prevents stragglers introduced by the communication limitations, which 
reduces the FL training latency. 

When frequent measurement of Channel State Information (CSI) is constrained, i.e., under imperfect CSI, it is vital to 
predict CSI accurately prior to RB allocation. In this case, the tools from Gaussian Process Regression (GPR), a Bayesian 
inference technique, can be utilized to jointly sample channels and predict CSI by exploiting the temporal dynamics of 
wireless links [26]. Here, GPR is used to predict the CSI between client 𝑘 and PS over RB 𝑏 using its past 𝑁 samples as 
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well as to provide its uncertainty, which is accounted as the additional information 𝑗𝑘,𝑏(𝑡) required for accurate future 
predictions. In this view, scheduling clients to maximize ∑ 𝑗𝑘

†(𝑡)𝜆𝑘(𝑡)𝑘  enables joint sampling and acquiring CSI 
information to improve channel prediction [26]. Here, 𝑗𝑘

†(𝑡) = [𝑗𝑘,𝑏(𝑡)]
𝑏∈ℬ

. 

2.3.2 COMPUTING RESOURCE CONSTRAINTS 

The dynamic power consumption 𝑃𝑐  of a processor at a client with clock frequency of 𝜔 is proportional to the product 
of 𝑉2𝜔, where 𝑉 is the supply voltage of the computing that is approximately linearly proportional to 𝜔 [27]. Due to 
other tasks (sensing, monitoring, actuating) handled by the clients concurrently in addition to local model training, the 
available computing power 𝑃𝑐  at a client fluctuates over time. In this view, given the local computation iterations 
(typically, measured in terms of Stochastic Gradient Descent (SGD) steps) 𝑀𝑘 over the local dataset of size 𝐷𝑘, the 
minimum computational time required for client 𝑘 is given by 

 

Here, the constants 𝜇𝑐 and 𝑏 are the number of clock cycles required to process a single sample and power utilized per  
computation cycle, respectively. To avoid unnecessary delays in the overall training that are caused by clients’ local 
computations, we impose a constraint on the computational time, with threshold 𝜏0 over the scheduled clients as 
follows: 

𝑠𝑘(𝑡) ≤ 𝕀(𝜏c,𝑘(𝑡) ≤ 𝜏0). 

This constraint prevents clients acting as computation stragglers during the FL. 

2.3.3 CLIENT SCHEDULING TOWARDS HIGH FL ACCURACY 

Classical FL assumes ideal computation and communication at the clients (referred to as IDEAL hereinafter). For a 
given global dataset 𝒟 =∪𝑘 𝒟𝑘  aggregated over local datasets {𝒟𝑘} and a predefined number of iterations 𝑇, by 
optimizing the model parameters 𝒘 IDEAL method results in a loss of 𝐹∗(𝒘(𝑇), 𝒟). Compared to a centralized training 
design over large number of training iterations that yields the minimal loss of 𝐹0, the IDEAL method results in a loss of 
accuracy 𝜀∗(𝑇) = 𝐹∗(𝒘(𝑇), 𝒟) − 𝐹0. It is worth highlighting that as 𝑇 → ∞, the condition 𝜀∗(𝑇) → 0 is held. 

Under the limited computation and communication resources (in both perfect and imperfect CSI), any type of client 
scheduling method results in a loss 𝜀(𝑇) ≥ 𝜀∗(𝑇), i.e., bounded by the performance of IDEAL scenario. Hence, it is 
essential to devise a joint client scheduling and RB allocation solution for FL under the limited resources that 
minimizes 𝐹(𝒘(𝑇), 𝒟) (or 𝜀(𝑇)). Under imperfect CSI, the FL loss needs to be minimized while improving the acquisition 
of CSI information via maximizing ∑ 𝒋𝑘

†(𝑡)𝝀𝑘(𝑡)𝑘 , where the FL (under limited resources) focuses on minimizing the 
following objective function [x]: 

minimize𝒘(𝑡),𝒔(𝑡),[𝝀𝑘(𝑡)]𝑘∀𝑡  𝐹(𝒘(𝑇), 𝒟) − 
𝜑

𝑇
∑ 𝒋𝑘

†(𝑡)𝝀𝑘(𝑡)

𝑘,𝑡

, 

where 𝜑(≥ 0) is a tradeoff parameter controlling the CSI exploration and FL loss minimization. Solving above objective 
under the communication and computation constraints is carried out with the aid of stochastic optimization tools 
including Luapunov optimization and linear programming [28]. The solution concept of joint client scheduling and RB 
allocation is illustrated in Figure 14. 

The client scheduling solutions under three different conditions are presented as proposed methods in Table 2. Under 
a simulated environment, the performance of the proposed methods is compared with two state-of-the-art 
scheduling algorithms as well as the ideal setup (no constraints on communication and computation resources) that 
are listed under Table 2. 
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Table 2. Proposed algorithms, baselines and benchmark algorithm 

  Model Description 

Proposed 
methods  

 QAW-GRP PS uses dataset sizes to prioritize clients and GPR-based CSI predictions for scheduling. 

QAW PS uses pilot-based CSI estimation and dataset sizes to prioritize clients. 

QUNAW PS uses pilot-based CSI estimation without accounting dataset size of clients. 

Baselines 
 RANDOM Clients are scheduled randomly. 

PF Clients are scheduled with fairness in terms of successful model uploading. 

Ideal setup  IDEAL All clients are scheduled assuming no communication or computation constraints. 

 

 

 

Figure 14. Joint client scheduling and RB allocation in FL training 

For the performance comparison, we carry out FL training over 𝑇 = 100 iterations. The loss in FL compared to 
centralized training model loss 𝜀(𝑇) under different scheduling policies are shown in Figure 15 for fixed number of 
clients 𝐾 = 10 (left) and fixed number of RBs 𝐵 = 5 (right). Without computing and communication constraints, IDEAL 
shows the lowest loss while RANDOM and PF exhibit the highest losses due to the communication resource limitations-
agnostic client scheduling. In contrast, the resource limitations-aware proposed methods QAW-GPR, QAW and QUNAW 
exhibit close to IDEAL performance. It is worth highlighting that the gap between proposed methods and baselines 
diminishes as the availability of radio resources increases in the system. 
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Figure 15. Comparison of Loss in FL under different scheduling policies with fixed number of clients (left) and fixed 
number of RBs (right) 

The impact of local SGD iterations under limited computing power availability is analysed in Figure 16. Due to the 
assumption of unlimited computing power availability, IDEAL performs well with the increasing local SGD iterations 𝑀. 
Similarly, gradual reductions in the loss of accuracy for both QAW and PF can be seen as 𝑀ing from two to eight. 
However, further increasing 𝑀 results in longer delays for some clients in local computing under limited processing 
power. Such computation stragglers do not contribute to the training in both PF (drops out due to the computation 
constraint) and QAW (not scheduled). However, the awareness of computation resources in QAW prevents the 
scheduling of stragglers, which yields better performance than PF. 

  

Figure 16. Impact of computation requirements on the loss of accuracy 
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To summarize, the conclusion of the study of Radio Resource Management (RRM) for learning are listed in Table 3.   

 

RRM for learning 

As the communication and computation resources become tighter in IoT networks, the resource and ML 
performance-agnostic scheduling policies yield poor learning. 

RRM for learning becomes crucial for large-scale IoT networks with limited resources. 

For a given target training time, the proposed client scheduling for FL ensures minimum loss over a centrally 
trained model yielding a performance close to the FL setup under unlimited resources. 

Table 3. Key takeaways of RRM for learning 

2.4 Radio Resource Management for human-in-the-loop communications 

The final research component of this section is specific of the most challenging traffic in IntellIoT: the scenario with 
the human-in-the-loop.  

2.4.1 HIL SYSTEM MODEL 

We consider a HIL system, in which a human interacts with a partially automated system by controlling one or more of 
the devices. We can consider the use of automated tractors in agriculture as an example: if one of the tractors is in a 
situation it cannot handle automatically, its control will be transferred to a human operator, who will then receive the 
tractor’s camera feed on a VR headset. As explained in Section 2, maintaining the information fresh is a key component 
to ensure safe and efficient operation: if the feed received by the human controller is old, either because of 
communication delay or of an insufficient update frequency, the operation of the tractor might be compromised. In 
this initial research we consider the VR traffic in the DL and only ACKs with a deterministic latency in the UL, and 
therefore we focus on the AoI set of metrics and not the AoL.  

Naturally, the heaviest task, both in terms of communication and computation, is the transmission of the VR frames 
from the tractor to the user: frames are generated every few tens of milliseconds, with common values of the inter-
frame time being between 16 ms (60 Frames Per Second (FPS) ) and 33 ms (30 FPS). 

Single link example: 

Using a single link to deliver these frames can be insufficient for two main reasons: 

• A temporary blockage, which can cause the loss of one or more frames, or a drop in the link’s capacity, which 
can cause frames to be delayed and queued, can significantly increase the age; 

• The capacity of the link even  under ideal conditions might not be sufficient to deliver the frame on time, 
leading to longer and longer queues and, consequently, longer waiting times. 

Taking the simplest case of VR traffic modeled as constant and transmitted in a buffer-aided system whose 
transmission time is exponentially distributed (D/M/1 queue), we can plot the reference results of latency and PAoI 
distribution. These evaluations are shown in Figure 17 and Figure 18, respectively, and they serve to illustrate the 
fundamental differences between the two metrics: while the packet latency decreases as the inter-frame interval  
increases (and therefore the load decreases), the PAoI shows a different behavior. Specifically, the PAoI is significantly 
increased with the largest value of =4, whereas the other two values of  =1.5 and =2 provide the lowest PAoI mean 
and tail, respectively.  
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Figure 17. CDF of the latency of a D/M/1 system for 3 different values of the arrival rate: 1.5, 2 and 4 

 

Figure 18. CDF of the PAoI of a D/M/1 system for 3 different values of the arrival rate: 1.5, 2 and 4 

 

VR/AR traffic characterization: 

We used traces from a publicly available dataset [6] to attempt to characterize VR traffic better. This analysis is 
necessary for a more intelligent resource allocation, as predicting the correct frame size can allow the BS to schedule 
packets more effectively and provide QoS to more sources at the same time. 

The video traces were recorded using live VR applications on the VRidge platform, which uses the nVidia NVENC 
encoder with H264 encoding. This encoder is meant to provide a Constant Bit Rate (CBR) output, i.e., its frames should 
ideally have the same size. The first important observation (see Figure 19) is that this is not true: The figure shows that 
the rate is actually highly variable. The various lines show different window sizes for a moving-average filter on the 
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bitrate, averaging bitrate from a frame-by-frame level (the blue line with a window of size 1) to a 5-second basis, as the 
video is recorded at 60 FPS. 

 

Figure 19. Moving average of the video bitrate over time 

 

  

This variability has significant implications for resource allocation. Ideally, a CBR video stream would be allocated the 
same resources for each frame, with no waste and perfectly predictable requirements. However, the real level of 
uncertainty makes it necessary to leave a significant amount of slack in the resource allocation, as the content of the 
video and the movement of the user’s field of view affect the bitrate in a highly unpredictable way [7]. 
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Figure 20 Relative increase in the rate as a function of the scheduling frequency 

 

This effect is also highly dependent on the granularity of the resource allocation: If the scheduling is run at a coarser 
time granularity, subsequent frames can compensate for variations, reducing the variance of the bitrate. Figure 20 
shows the relative increase in the bitrate as a function of the chosen window: The 99th percentile of the bitrate can be 
over 80% larger than the average if we consider each frame individually, requiring a large safety margin in the 
scheduling and thereby wasting significant network resources, but only about 15-20% if the scheduling is performed 
once every second. 

 

2.4.2 VR/AR VIDEO TRANSMISSION WITH MULTIPLE PATHS 

To overcome the limitations of a single link, we can look at the use of multiple paths, with strategies such as duplication 
or splitting the frames. Each scheme has advantages and disadvantages, as there is an important tradeoff between 
reducing the load on the system (i.e., keeping shorter queues), and increasing the reliability of each single frame.  

VR/AR traffic requires a high throughput and strict latency guarantees, as the perception of real-time control needs 
to be maintained for the user to have a smooth experience. As we described in Section 2, AoI is a relevant metric: as 
UL transmission from the user to the server are only short commands and acknowledgments, we can assume that they 
have a constant latency, making AoI equivalent to AoL.  

We considered the use of multiple parallel communication paths, which can be achieved in 5G networks (and beyond) 
by using multiple Radio Access Technology (RAT)s or multiple BS or integrating different technologies and spectrum 
bands over traditional infrastructure-based networks. Over the past few years, the use of multiple connections to 
provide stricter latency guarantees has been a subject of intense research, and AR/VR is one of the prime applications 
for this (including both the industrial use cases proposed in IntellIoT, such as HIL control, and commercial scenarios 
such as VR gaming). As such, we considered a system with two paths, modelling each as a D/M/1 queue by assuming 
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that the video frames are generated with a constant frame rate. We can then assume that each frame of L bits can be 
split in different ways among the two paths: 

An alternating system sends each frame on only one of the two paths, using path 1 for odd-numbered frames and path 
2 for even-numbered ones; 

• A split system simply divides the L bits into two equal subframes of L/2 bits. In order for the frame to be 
displayed, both subframes have to be delivered correctly; 

• A replicated system transmits two copies of the whole frame over the two paths, so that each copy is 
sufficient to decode and display the frame. Naturally, this increases the load on the system; 

• A coded system encodes the frame into two subframes of L/2 η, where η is the efficiency of the code. By itself, 
each subframe is not enough to decode the whole frame, but it can be used to show the user a lower-quality 
version of it. Coding schemes such as Multiple Description Coding (MDC) can implement this kind of system in 
practical video setups. 

The four schemes are represented in Figure 21. We can then model the latency and PAoI of these systems as a function 
of the rate µ of each path, the frame interval τ, and the error rate ε. Naturally, the coded system’s performance will 
also depend on the coding efficiency. 

 

 

Figure 21. Schematic of the four considered schemes 

We derived the closed-form expression for the complete distributions of the latency and PAoI for the four schemes, 
with a close approximation for the PAoI in the alternating scheme (for which our formula is a lower bound if ε >0). Figure 
22 shows the 99th percentile of the latency as a function of τ, showing that less frequent transmissions lead to better 
latency performance: As the queues are less loaded, frames often find an empty system and are transmitted 
immediately. Naturally, the split system is the fastest, along with the low-quality version in the coded scheme, but this 
comes at a cost: The split system also has the highest error probability for frames (0.36 in this case, compared to only 
0.04 for the replicated scheme), as losing one of the two subframes is enough to make the whole frame unrecoverable. 

 



ICT-56-2020 “Next Generation Internet of Things” 
D4.7: Dynamic network management (first version) 
Dissemination level: Public 

 

 

 

17/05/2023  

 

29 

 

Figure 22. 99th percentile of the latency as a function of the inter-fame interval τ, with µ =1 and ε =0.2 for both paths. 

The trade-offs and considerations are completely different for the PAoI, as losing a frame is not necessarily a problem, 
as long as the next frame is delivered soon enough. In this case, a low frame rate is not beneficial, as the inter-frame 
interval then becomes the major factor in the PAoI. The curve for all schemes has the typical U shape, as setting a high 
frame rate also increases the PAoI by increasing the latency for each individual frame. The minimum at which the two 
factors are balanced depends on the scheme and is at a higher τ for systems that put more traffic on the network, such 
as the replicated scheme. Surprisingly, the alternating scheme seems to perform better than most of the coded 
schemes, although they are all very similar, and the replicated scheme has the bonus of having relatively few frame 
losses: this can make inter-frame encoding more reliable in practical systems, potentially increasing the efficiency of 
the video encoding. The coded system with MDC has the best PAoI performance for the low-quality version, but the 
PAoI between subsequent high-quality frames is the highest of any schemes, so it is a good compromise if the low-
quality version can be enough for acceptable control. 

 

Figure 23. 99th percentile of the PAoI as a function of the inter-frame interval τ, with µ = 1 and ε = 0.2 for both paths 
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The results above were plotted for η=0.75, but the coding efficiency plays a huge role in the effectiveness of the coded 
system. We can see this in Figure 24, which shows the 99th percentile of the PAoI as a function of η: In this case, a 
higher coding efficiency can significantly improve the PAoI for the high-quality version, reducing the load on the 
systems and allowing for more efficient transmission.  

 

Figure 24. 99th percentile of the PAoI as a function of the coding efficiency η. 

While the results above are still a theoretical model that is far from practical considerations, they give a strong 
indication on the trade-offs in AR/VR transmission over multiple connections in 5G and beyond. The work in the next 
section is an expansion of this theoretical model into a more practical analysis, using a data-driven approach instead 
of queuing theory as a main tool for analysis. 

 

2.4.3 VR/AR DATA-DRIVEN ANALYSIS AND OPTIMIZATION 

While the work above was based on simplified theoretical models, we have also considered a more realistic approach, 
based on actual traces from a VR application. The traces were recorded in collaboration with the University of Padova, 
and traffic analysis and deep packet inspection were used to extract the type and size of packets, both in the uplink 
and downlink. A short snippet from a trace is shown in Figure 25, with downlink (from the PC rendering the VR 
environment to the phone which acts as a visor) and uplink (from the visor to the PC) packets highlighted in different 
colors depending on their meaning. As the figure shows, most of the traffic volume is caused by the video frames, 
which are both more frequent and larger. 
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Figure 25.  Traffic analysis for the VR application. 

The VR framework we used (RiftCat Vridge, a commercial Google Cardboard VR engine) used the H.264 encoding, 
enabling the intra-block refresh option to make the traffic Constant Bit Rate (CBR), i.e., approximate the condition we 
had in the previous section by making all frames approximately the same size. However, the actual frame sizes were 
not exactly the same, with as much as a 30% variation: not as much as in standard Variable Bit Rate (VBR) encoding, 
which can have order of magnitude differences, but still significant, as can be seen in Figure 26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26.  Frame size distribution with different smoothing windows. 

 

We can consider a simple linear regression model to predict future frame sizes, as the patterns in the data seem simple 
enough. The error of the model is relatively high, indicating that there is a strong random component in the frame size, 
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but as Figure 27 shows, the model is easy to generalize, as regressors trained on the whole dataset perform about as 
well as the ones trained on the specific content and rate considered in the test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27.    Prediction model error on the average (OLS) and 95th percentile of the frame size. 

Figure 28.    Predictive slicing performance. 

 

Finally, we can consider the use of this prediction: if we know the size of future frame sizes, we can adaptively slice 
the network resources so as to guarantee a low-latency VR transmission, which is crucial for the user experience, while 
using as few bandwidth resources as possible. As Figure 28 shows, there is a trade-off between latency and required 
capacity, but by carefully tuning the objective percentile ps, the Constant Slicing scheme (CS), which gives the VR flow 
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a constant capacity for the next 100 ms, can achieve the same performance  as the Frame-by-Frame Slicing scheme 
(FS), which assigns capacity dynamically for each frame based on the prediction.  

Figure 29.    Edge transcoding latency schematic. 

Another thing we can consider is edge transcoding: normally, movement data is sent from the HMD to the Cloud server 
rendering the VR content, which then renders the scene and transmits it back to the HMD. In the scheme on the right 
side of Figure 29, however, the Base Station (BS) can also decide to transcode the frame into a more compressed 
version, saving time and resources by slightly reducing the picture quality. The three possibilities are then fixed slicing 
(which has either significant overprovisioning or highly volatile latency), predictive slicing (which can use resources 
more efficiently, but still requires overprovisioning to guarantee a low latency), and transcoding, which has low latency 
and a low resource footprint, but reduces the picture quality. Figure 30 shows the performance of edge transcoding, 
as compared to slicing: we can see that edge transcoding can maintain low latency as consistently as predictive slicing 
(with a lower capacity utilization), but the quality of the video decreases sharply if the transcoding time 𝛕f grows: if the 
BS takes more than 2 ms to transcode the frame, the video quality decreases by 30% or more. The choice of the optimal 
scheme is then highly dependent on the amount of computational resources available to the BS, and whether the 
trade-off between computation and communication is worth it. 
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Figure 30.    Edge transcoding performance. 

The main conclusions of the study of RRM for HIL are listed in Table 4 

 

RRM for HIL 

VR/AR traffic is very demanding for the computation and communications infrastructure, requiring high 
throughput, high reliability, and low latency and AoI.  

VR transmissions with state-of-the-art CBR encoders lead to variable traffic that calls for traffic prediction 
and data-driven solutions to optimize the use of resources. 

Parallel transmissions can be exploited for VR/AR transmissions, and the optimal strategy depends on the 
complex tradeoffs among picture quality, frame rate, and timeliness requirements.  

Table 4. Key takeaways of RRM for HIL 

 

2.5 Implementation of the communication resource manager 

Implementation: In the implementation side, the first step has been to create a local setup of 5G infrastructure in the 
form of a platform utilizing Open Air Interface (OAI). The OAI alliance is a non-profit consortium to develop ecosystem 
for open-source software/hardware development for the Evolved Packet Core (EPC) and RAN of 3GPP cellular 
networks, including 5G. IntellIoT has selected the specific implementation of EURECOM, developed in T4.2 for the 
specific purposes of IntellIoT. Within OAI, Mosaic5G provides an ecosystem of 5G R&D open-source platforms ranging 
from the centralized network control to the mobile edge network deployment. Specifically, Mosaic5G testbed 
architecture consists of seven software modules along with hardware components: OAI, FlexRAN, LL-MEC, Store, JOX 
FlexnCN and FlexRIC.  The most relevant ones for this task are the first three: 
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1. The OAI platform is composed of 2 separate modules, the first is OAI-CN which exists for both 4G and 5G. The CN 
can be deployed disaggregated across different computers or on a single host by deploying a set of docker 
containers than are required for the CN in question.  
The second module, OAI-RAN, contains an executable that can be used to perform simulation and emulation of the 
Evolved NodeB (eNB), User Equipment (UE), New Radio (NR) UE and gnodeB (gNB). These modules can be both 
utilized for a simulation set-up, which skips lower layer functionalities (the radio), and allows easy scaling of UEs. 
This can be used to verify and test higher-level functionalities, e.g., scheduling policies and how this affects the 
experienced network performance viewed from the perspective of different UEs. They can, however, also be run 
in an emulation environment where the entirety of a communication system is realized, i.e. the radio 
functionalities are also performed by utilizing software defined radios, which produces more realistic results at 
the expense of scaling being more difficult. With OaI-CN and OaI-RAN the functionalities to realize a emulated 5G 
setup can be realized. 

2. FlexRAN is a real-time RAN controller, which specifically controls underlying eNBs. The FlexRAN Application 
Programming Interface (API) offers the ability to extract information of the radio network through the BS (eNB). It 
furthermore facilitates radio slicing, to allocate a set amount of RBs, or bandwidth, to specific UEs whom may 
have a certain application that requires specific requirements (e.g., low latency, high reliability, …) that can be 
guaranteed through this allocation. This was initially used as a framework for the communication resource 
manager while the FlexRIC was being developed. 

3. FlexRIC A newer implementation with similar functionalities to FlexRAN. It is, however, implemented with 
OpenRAN in mind as the near real-time RAN Intelligent Controller (RIC). New interfaces and different 
functionalities now available compared to FlexRAN with cross-generational support for both the eNB and gNB. 
From a practical perspective it can do the same in terms of slice allocation with different scheduling policies for 
the UEs, hence similarly bandwidth, low latency and such slices are feasible. 

4. LL-MEC is a Low Latency Multi-access Edge Core that involves bringing the data closer to the user. This requires 
rerouting the data plane through a data centre on the edge of the network, close to the user, from which data can 
be stored and transmitted with lower latency compared to the alternative of data stored at far away data centres. 
This can be used to reduce the delay of some applications, as well as slicing on a network level. 

5. FlexCN is a module meant for the control and monitoring of the system on a 5G CN. It currently only allows for 
monitoring of the CN in terms of the AMF and SMF. Specifically relevant is that the CN controller also allows the 
existence of application which will be a necessity for the slice creation and identification of UEs.  That is, a 
translation must be done between the RNTI (on the gNB used for UE identification) and the IP, or IMSI which are 
known may be known to the UE. To create a slice for a specific user in a multi-user scenario an application for 
translating the UE identifier on the gNB may be required to map the RNTI to the correct UE intended for a slice. 

The local setup was initially implemented with a simple setup for the future deployment and development of the 
Communication Resource Manager. The initial focus was on deployment of FlexRAN and performing the slicing only on 
the RAN level, which simplifies the setup equipment, and more will be needed for a more elaborate setup with more of 
the aforementioned software modules, i.e., LL-MEC and FlexCN. With the progressive updates the FlexRIC was 
released, which had a very different way to communicate and interactions with the base station it was connected with, 
which meant redesigning the way the Communication Resource Manager operated, when using the FlexRIC compared 
to the FlexRAN. This being a requirement with FlexRAN’s limited support to only 4G, and FlexRIC supporting both 4G 
and 5G. Internal logic, and interaction with users requesting a slice could however be kept similar. 

To test the implementation, it has been done over different configurations. The initial premise was with the FlexRAN 
using a deployment scenario with a single computer hosting simulated UEs connected to the eNB. This meant skipping 
the radio-level communication. The core was also hosted there in a containerized environment. 
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Initially the slicing mechanism implemented through the FlexRAN API was also tested and evaluated. When a slice is 
created it separates a set of frequency resources from the pool of available resources. While default users have access 
to the initial pool of resources and share these in a best effort manner, single or sets of UEs can be associated with a 
slice and have access to isolated resources. The slice of resources provides the users with some guarantees on the 
performance that they shall experience in terms of bandwidth and latency. These users experience would be 
independent of the best effort slice users, and thus creates a more deterministic performance on which guarantees 
could be made. 

The setup was then extended as newer implementation became available, specifically FlexRAN has been switched out 
for FlexRIC, and the eNB, UE and CN switched out with their 5G counterparts. Similarly, a simulator was used when 
starting this, to ensure the initial development and integration of the Communication Resource Manager. Tests have 
in the following been performed with emulated setups where the UE, and  nrUE were deployed on a different computer 
and connecting to the base station through a radio-link deployed through Software Defined radios. Here the slice and 
expected performance set for the slice could be investigated to see if it applies in a real scenario. Specifically, the 
ability to support a specified bitrate which the UE would have. 
Due to limited functionalities parts of the testing meant for the 5G resource management is based on the 4G 
implementation as it has been more complete while the interfaces through the FlexRIC are similar between 4G and 5G. 
While 5G is the use case scenario and functionalities should be evaluated for it, the initial testing has been performed 
on 4G due to a more stable performance locally, and the fact the interface between the base station and FlexRIC are 
meant to be the same, independent of whether it is a gNB or eNB.  

With the new interfaces and methods towards interacting with the FlexRIC compared to FlexRAN the features 
supported now are: 

• Creating a network slice by requesting a set of resources for a user through choosing its Radio Network 
Temporary Identifier (RNTI) (i.e. a pseudo-random ID that is generated and granted to a UE). The slice created only 
applies in the downlink, as uplink slices have not yet been implemented on the gNB. Upon creating a network slice 
an identifier is returned identifying the slice. It works by creating a HTTP GET request. 

• Removing a network slice. It works by using a HTTP DELETE request. In this form the slice ID must be sent along 
with the request.  

• Associating a UE, or new UEs to an existing slice by using the slice ID and the RNTI of the UE to add. This will mean 
that the resources are to be shared between all occupants on a slice.  

• When creating a slice one of the desired inputs has been a requested bitrate that should be available on the slice. 
This has been implemented by monitoring the radio link quality and allocating a set of physical resources to ensure 
that. When changes to the radio link occur, a reallocation may occur to ensure the slice guarantee. An example of 
this is visualised on Figure 31. This is done with a frequency to ensure the guaranteed bitrate is upheld. 

• Taking an existing slice configuration, it can be updated to support a different requested bitrate. 

• Requesting information on a specific slice by inputting its slice ID, or by requesting all the currently active slices 
that are being supported by the BS. 

Some of these functionalities are directly exposed to be used through HTTP request, while others happen in the 
background of actively used for the creation and upholding of a slice definition. The interface with the Communication 
resource manager has been designed and implemented as a python-flask server and by using swagger for interface 
design. Interaction is with a set of predefined interfaces that take certain inputs to create, delete, or get information 
on a network slice.  

Figure 31 shows one example of dynamic allocation of slices.  
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Figure 31. Example of dynamic resource allocation 

 

Experimental measurements and estimation of VR latency over  OAI: Towards creating a latency-based slice 
mechanism for VR application, we extend the previous theoretical and simulation studies and measure the 
experienced latency of VR data used in Section 2.4.3 but now being sent to a UE over the OAI network. The 
measurement is compared against a latency estimation based on RAN statistics. To measure this on the local setup at 
Aalborg University, we deploy a server on the core network acting as the MEC of UC1/UC3.  
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Figure 32. Estimated VR latency and comparison to experimental measures over a 5G OAI network. The parameters are 
14 RBs, 60 FPS and 10Mbit/s encoding 

The results are shown in Figure 32. We set a slice for the VR user with 14 Resource Blocks, a video encoding of 10Mbit/s 
and 60 FPS. The figure illustrates the measurements of the average latency over the past second window as measured 
by the Communications Resource Manager xApp on the flexRIC (blue), and the latency observed at the UE (orange). The 
average is calculated as a sliding window over the latency of the past 60 frames measured from RAN statistics and 
each frame received on the UE to make a one second average which we compare against each other. The UE latency 
is measured by encoding timestamps into UDP packets when the transmission of a video frame occurs, and 
subtracting it from the time upon arrival. The clocks of the computers are synchronized. We observe that the 
estimated latency matches the measurements very well. The small drift (e.g., around 275 to 325seconds) is related to 
imperfect measurements of video frames, specifically having less frames on the RAN than sent to the UE. Note that 
this difference is not due to lost packets, but related to the separation between video frames and the measurement. 
This estimation of the latency is used for a better (re-)configuration of the VR slice at the Communications Resource 
Manager. 
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3 WIRED NETWORK MANAGEMENT 
The second part of the communication optimizations is the wired segment and TSN controller (C2). Ethernet networks 
can operate without management. However, to guarantee QoS parameters for certain data streams, explicit network 
management is required. The same is true for other possible management issues, e.g. network segmentation, access 
protection, etc., which is out of the scope of the project. The scope of the work on network management is rather to 
guarantee QoS parameters through the factory backbone, i.e. the wired communication network. In IntellIoT, a TSN 
network is used here, which allows to fulfill the QoS requirements described below, particularly concerning machine 
control and remote help from a human operator. Of course, unmanaged best-effort traffic for uncritical applications 
is still possible through the factory backbone network. To configure the network, we are using a network controller, 
i.e. we are following the fully centralized configuration model defined in IEEE 802.1Qcc, see Figure 33. 

 

 

Figure 33. Fully centralized configuration model 

The TSN controller described in this section conforms to the Centralized Network Configuration (CNC) described in 
IEEE 802.1Qcc, while our edge orchestrator takes the role of Centralized User Configuration (CUC). An Edge 
Orchestrator deploys the applications on HW resources in the edge, which are Talkers and Listeners from the 
network’s point of view, and it requests the according communication services from TSN controller. 

3.1 TSN controller & QoS requirements 

The TSN controller gathers information about the active network topologies. To do so, it reads LLDP information from 
network devices. Additionally, it reads available YANG models from the devices to gather information about their 
capabilities and current configuration. End stations supporting LLDP can be detected in the same way. Information 
about the active topology and relevant properties, particularly available bandwidth and estimated delay values for new 
streams, are provided via the network controller’s northbound HTTP interface, which is predominantly used by the 
edge orchestrator. Via the same interface, the TSN controller also receives so-called communication service 
requests, i.e., reservation enquiries for network resources. Communication service requests contain required 
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properties of the communication service, i.e., source node, destination node(s), packet size, and send cycle. Additional 
optional parameters, like delay or jitter constraints, send window constraints or preferred Virtual Local Area Network 
(VLAN) ID are possible. Future extensions, e.g. for reliability requirements, are planned. Communication service 
requests are predominantly, but not exclusively, filed by the edge orchestrator. Requests from standalone 
applications, from edge perspective so-called unmanaged applications, are possible. 

For the received communication service requests, the TSN controller computes paths and schedules or reserves 
network resources via per-stream filtering and policing (PSFP), depending on the QoS requirements. The TSN 
controller enforces the computed communication services in involved network nodes, and end devices where 
applicable. It then informs the requester about the result of its computation and enforcement attempts. In success 
case, this contains a confirmation of the request, the achieved QoS properties (which are at least as good as requested) 
and eventually additional parameters like assigned VLAN ID or time-aware offset. In case of failure, it informs about 
the failure. 

In IntellIoT’s manufacturing use case, predominantly the following two applications bring interesting QoS requirements 
to the TSN network: 

(1) The milling machine is set up with a controller in the form of an Edge Application, that means the control of 
the milling machine is not computed on a dedicated hardware, but on an edge device. This edge device does 
of course not have direct physical connection to the axes of the milling machine, like e.g., Pulse Width 
Modulated (PWM) signals or stepper motor pulses. It is rather connected to small TI Sitara controllers, which 
are controlling only one axis of the milling machine each, through the TSN backbone. The control signals are 
thus time critical and need to be executed synchronously to achieve high-quality milling results. Required QoS 
values are in the range of sub-milliseconds, while smaller values enable a faster and more precise operation 
of the machine. It should be pointed out that this differs substantially from so-called best-effort traffic, where 
the simple rule “faster is better” applies. Once the speed of operation of the milling machine is decided, the 
delay and jitter values taken for the calculation of the operation speed need to be guaranteed to ensure proper 
milling results. 

(2) In the HIL scenario, a human operator directly controls the robot, based on the image she sees on her AR 
glasses. Same as in the tractor-example given in chapter 2, the AoL can be a good metric in this scenario. 
Experiences from gaming industry give rise to the assumption that a delay of up to 80ms from a hand 
movement to seeing the effect of the movement is tolerable. This delay comprises the detection of the 
movement in the stylus device, computation and serialization of a movement command, transport, reception, 
and execution of the movement command by the robot controller, inertia of the robot, capturing and 
streaming of the image through the camera, transport again, reception of the image and displaying it through 
the AR glasses. The overall performance of the system is a research objective in UC3, the time budget left for 
communication is to be identified. However, a guarantee for the communication delay is required, as a sudden 
change in the experienced delay will make a proper operation of the robot extremely difficult or even 
impossible.  
 

3.2 Selection of TSN features 

Based on the QoS requirements described above, proper TSN features have been selected. For the synchronous 
operation of the milling machine axes, synchronization based on IEEE1588v2 (Precision Time Protocol, PTP), is 
required. For maximum performance, i.e., optimized balance between speed of operation and quality of result, minimal 
delay and minimal jitter are the goal for the milling machine control. To achieve this, Time-Aware Scheduling (TAS), 
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(IEEE802.1Q-2018, formerly known as IEEE802,1Qbv) is the TSN feature of choice. Due to the static nature of the milling 
machine – even if occasional re-deployments of the control application are to be taken into account – the considerable 
effort for computation and deployment of TAS is certainly reasonable. 

For the HIL use case, practical tests comprising the complete functional chain from the stylus input device through 
the robot and the camera to the AR glasses have shown, that TAS would not really be needed. Particularly, because the 
end devices in use, i.e. the robot controller, camera and HoloLens, are not ready to provide their send data at a pre-
planned point in time. Thus, for this communication service, strict priority scheduling combined with PSFP (IEEE 
802.1Q-2018, formerly known as IEEE802.1Qci) could be applied. Allowing for more jitter and additional delay of about 
12,5µs per hop, this solution would avoid a re-configuration of all network nodes transporting data between a robot 
needing help and the operator in charge. Instead, only end points at the robot and operator side would need to be 
reconfigured to enable PSFP to protect the strict priority schedule from unplanned or unwanted packets in high 
priority queues. However, as we anyway need a TAS scheduled network due to the more stringent requirements from 
the milling machine, we decided to also use TAS scheduling for the HIL use case. 

 

The conclusions of this study are listed in Table 5: 

Wired network management 

TSN offers several standards to improve QoS in Ethernet networks. Lower delay comes with higher cost and 
effort together with lower flexibility. We have selected the best match for IntellIoT’s requirements: As TAS 
is needed for the milling machine requirements, we apply it to all streams for the sake of consistency. 

TSN controller appears as an edge application and can be deployed somewhere in the edge environment. 

TSN controller interacts with edge orchestrator and Security Assurance Platform to receive 
communication service requests and commands to exclude malicious devices. Application’s QoS 
requirements are relayed through edge orchestrator. 

Table 5. Key takeaways of wired network management 
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4 OPEN SOURCE 
The Communications Resource Manager (C2) is available here: 

https://gitlab.eurecom.fr/intelliot/communication-resource-manager 

In the following, some relevant information to use the code. 

Building and running the docker container 

To build the image run "./build.sh" this will create the image. This will require internet to install needed dependencies 

After making the image, the container should be runnable with docker-compose up. This will start a python flask server 
in the container, which supports the API calls defined previously. Note that the .env file contains IP of the FlexRIC which 
must be set, as well as IP for the manager itself. The available rate must also be defined as it is a requirement for the 
slice functionality to know the bandwidth available. The slicing allocates as a fraction of the entire rate, so if this is 
wrongly set the slices will not support the requested rate. 

API defintion can be found in commrm-api.yaml 

Functionalities 

The slice mechanism works for both 4G and 5G utilizing the NVS slicing as developed for the flexRIC. Currently only 
downlink slices are supported, and the latency measures are intended for future work specifically towards guarantees 
of VR frames that are sent over the air. 

Due to limitations with relating IP to unique identifier in the RAN (RNTI), currently only a single UE can have its own 
slice, and this is simplified to be the first UE joining the network. This can be addressed by encoding the RNTI and 
adding the specific RNTI when creating a slice as opposed to the first RNTI 

Simple API tests 

API can be called through application like postman, otherwise example ones from the terminal can be seen below 

curl -X POST --user : http://$IP:8081/reservation -H'Content-Type:application/json' --data-raw 
'{"maxLatencyMillisUplink": 0.80, "addressType": "ipAddress", "maxJitterMillisUplink": 6.02, 
"maxLatencyMillisDownlink": 5.96, "maxJitterMillisDownlink": 5.63, "minThroughputMbpsDownlink": 5, "clientAddress": 
"192.168.55.55", "minThroughputMbpsUplink": 1.46}' 

Get single reservation test curl -X GET --user : http://$IP:8081/reservation/1 

Get All reservations test curl -X GET --user : http://$IP:8081/reservation 

Delete reservation test curl -X DELETE --user : http://$IP:8081/reservation/1 

Running 

To run the application, make sure a flexRIC is running and connecting to a eNB or gNB. Only OpenAirInterface 
implementaitons should be suppported for this, and these must also have the flexRIC patch applied. 

With a UE connected, or multiple, a network slice can be created that allocates part of the bandwidth to the first UE 
that joined the network 

 

 

https://gitlab.eurecom.fr/intelliot/communication-resource-manager
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5 CONCLUSIONS AND NEXT STEPS 
This final report of Task 4.3 has described the main challenges of the dynamic resource management in intelligent IoT 
environments. The task has been structured in research activities and implementation activities, the latter aiming at 
providing the two components for dynamic management to be integrated in WP5 and the UCs. In the research, the 
work has been divided for the different types of traffic: HIL, ML and mixed traffic and network slicing. For the 
implementation, the communications resource manager is an xApp integrated with the rest of 5G infrastructure 
provided by Task 4.2. For the TSN controller, the interfaces have also been defined and time-aware scheduling is to be 
considered. We note that this task provides components that are universal and to be integrated in 5G and TSN 
networks, therefore applicable to any 5G or TSN traffic or Use Case, beyond the ones defined in IntellIoT. 
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ACRONYMS 
 

IoT Internet of Things 

URLLC Ultra-Reliable Low Latency Communications 

TSN Time Sensitive Networking 

5G  5th Generation 

HIL Human in the Loop 

V2V Vehicle to Vehicle 

AoI Age of Information 

PAoI Peak Age of Information 

VR Virtual Reality 

AoL Age of Loop 

WNCS Wireless Network Control System 

UL Uplink 

DL Downlink 

RL Reinforcement learning 

EC Effective Capacity 

QoS Quality of service 

AR Augmented Reality 

ML Machine learning 

AI Artificial Intelligence 

BS Base Station 

FCFS First Come First Serve 

CDF Cumulative Distribution Function 

AGV Autonomous Guided Vehicle 

FL Federated Learning 

PS Parameter Server 

RB Resource Block 

SINR Signal to Interference + Noise Ratio 

CSI   Channel State Information 

GPR Gaussian Process Regression 
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SGD Stochastic Gradient Descent 

RRM Radio Resource Management 

FPS Frames per second 

CBR Constant bit rate 

RAT Radio Access Technology 

MDC Multiple Description Coding 

DLT Distributed Ledger Technology 

3GPP Third Generation Partnership Project 

RAN Radio Access Network 

eMBB Enhanced Mobile BroadBand 

mMTC Massive Machine Type Communication 

NOMA non orthogonal multiple access 

OMA Orthogonal Multiple access 

SIC Successive Interference Cancellation 

 AWGN  Additive White Gaussian Noise 

SNR Signal to Noise Ratio 

EB Effective Bandwidth 

OAI OpenAirInterface 

EPC Evolved Packet Core 

eNB Evolved Node B 

UE User Equipment 

NR New Radio 

gNB gNodeB 

API  Application Programming Interface 

IMSI Internal Mobile Subscriber Identity  

RNTI Radio Network Temporary Identifier 

CQI Channel Quality Indicator 

MEC Multi-access Edge Computing / Mobile Edge Computing 

CNC Centralized Network Configuration 

CUC Centralized User Configuration 

VLAN Virtual Local Area Network 
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PWM Pulse Width Modulated 

TAS Time Aware Scheduling 

PSFP Pre-Stream Filtering and Policing 
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