

 ICT-56-2020 “Next Generation Internet of Things”

 Grant Agreement number: 957218

Deliverable D4.8
Trust mechanisms (final version)

Deliverable release date 09/05/2023

Authors 1. EURECOM: Jérôme Härri
2. AAU: Beatriz Soret, Lam Nguyen
3. TSI: Andreas Brokalakis, Charalampos Savvakos, Thomas Kyriakakis
4. SANL: Konstantinos Fysarakis, Antonios Paragioudakis, George Nikitakis, Sotirios

Michail, Despoina Ntolka

Editor Konstantinos Fysarakis (SANL)

Reviewer Sumudu Samarakoon (UOULU), Bas Flaton (Philips)

Approved by PTC Members: (Vivek Kulkarni, Konstantinos Fysarakis, Sumudu Samarakoon, Beatriz Soret,
Arne Bröring, Maren Lesche)
PCC Members: (Vivek Kulkarni, Jérôme Härri, Beatriz Soret, Mehdi Bennis, Martijn Rooker,
Sotiris Ioannidis, Anca Bucur, Georgios Spanoudakis, Simon Mayer, Filippo Leddi, Holger
Burkhardt, Maren Lesche, Georgios Kochiadakis)

Status of the Document Final

Version 1.0

Dissemination level Public

Ref. Ares(2023)3463033 - 17/05/2023

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

2

Table of Contents

1 Introduction ...4

1.1 Overview of IntellIoT’s Trust-related efforts ...4

1.2 Relation to Objectives & KPIs ... 6

1.3 Deliverable outline & delta compared to previous version. ... 7

2 Continuous Assurance and Certification .. 8

2.1 Overview .. 8

2.2 Internal Architecture ... 8

2.2.1 Cyber System Asset Loader ... 10

2.2.2 Vulnerability Analyzer ... 11

2.2.3 Dynamic Tester ... 12

2.2.4 EVEREST Monitoring ... 13

2.3 The IntellIoT Assurance Model ... 15

2.4 Model-driven Assessments .. 19

2.5 Orchestration, Automation & Incident Response ... 23

2.5.1 IR Tool Architecture ... 24

2.5.2 Playbook Details .. 25

2.5.3 IntellIoT Use Case -specific playbooks ... 27

3 Authentication, Authorisation and Accounting ... 30

3.1 Direct deployment ... 34

3.2 Deployment through Reverse Proxy ... 38

3.3 Deployment and Functional Testing ... 39

4 Trust-based Intrusion Detection System (IDS) ... 40

5 Moving Target Defences (MTD) ... 43

5.1 MTD Server ..44

5.2 MTD Client ... 46

6 Trust Message Broker & Trust Components’ Integration ... 49

6.1 Trust Enablers’ Integration Overview ... 49

6.2 IDS integration details ... 50

6.3 MTD integration details .. 50

6.3.1 MTD Registration topic .. 51

6.3.2 MTD Config topic ... 51

6.3.3 MTD Keep-Alive Request And Keep-Alive Response topics .. 52

6.3.4 MTD and SAP ... 53

6.4 Integration & interplay of Security Assurance Platform with the DLTs ... 53

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

3

6.4.1 SAP to DLT record of internally generated Evidence .. 54

6.4.2 SAP to DLT record of Trust Enabler Evidence .. 56

6.4.3 SAP to DLT record of Monitoring Evidence... 58

7 Additional Security, Privacy, and Trust Primitives .. 60

7.1 Multi-layer Monitoring .. 60

7.1.1 Event Captors .. 60

7.1.2 Events Common Schema Specification ... 60

7.2 5G Security Considerations .. 62

7.2.1 Overview of Common 4G/5G Security... 63

7.2.2 New 5G-specific innovations ... 63

7.3 Other best practices, processes, and technologies ... 64

8 Conclusions .. 66

References .. 67

Annex A – IntellIoT Asset Model specification form .. 68

Annex B – Asset Model Grammar .. 70

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

4

1 INTRODUCTION
This deliverable, being the final output of Task 4.4 (“Trustworthy infrastructure by design”), aims to provide details on
the design and development of the second (and final) version of the trust mechanisms that are an integral part of the
IntellIoT framework. These mechanisms, and the associated enablers, jointly provide trust-by-design, safeguarding
the security and privacy of IntellIoT and its target deployment (e.g., use case deployment), ultimately building trust into
IntellIoT and the application deployment as a whole.

1.1 Overview of IntellIoT’s Trust-related efforts

From a high-level perspective, IntellIoT’s Trust Mechanisms and the associated components can be grouped into three
pillars:

• Continuous Security Assurance, centred around the provision of evidence-based assessments of the security
and privacy posture of IntellIoT and its deployment;

• Security, Privacy & Trust primitives, including innovative enablers such as trust-based intrusion detection,
moving target defences, and Distributed Ledger Technologies (DLT), and;

• Multi-layer Security Monitoring, provided by heterogeneous, purpose-developed event captors that are
deployed across IntellIoT deployment layers and which cover core components and processes.

These three pillars and their interplay are visualised in Figure 1.

Figure 1. The three implementation-level trust pillars of IntellIoT

From a component development perspective, details on the individual enablers comprising the above three pillars, and
how they all fit together, have been documented in deliverable D2.6 - “High level architecture (final version)”, whereby
a separate subsection dedicated to these “Trust Enablers” has been included in all 4 views of IntellIoT’s architecture

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

5

that said deliverable provided. Figure 2 highlights these enablers, as identified in the final version of IntellIoT’s high-
level, logical architecture, documented within D2.6.

Updates to the architecture (compared to what was defined in D2.3) & the enablers themselves (compared to what was
delivered in Cycle 1; D4.4) include a richer feature set, as was anyway typically anticipated on the initial delivery plan of
each component, but also integrate changes based on feedback from Cycle 1 of the project (see Cycle 1 demonstration
activities of Task 5.2, documented in D5.2 & following evaluation activities of Task 5.3, documented in D5.3). These
provided valuable inputs for the design and implementation of the final components of Task 4.4.

Figure 2. Core trust enablers (top right) within the final version of IntellIoT’s architecture

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

6

Finally, from a work plan perspective, and being the final (i.e., Cycle 2) output of Task 4.4 - this deliverable provides
details on the final versions of the trust mechanisms and components, as planned to be integrated into the final release
of IntellIoT. Said version is to be delivered through D5.4 – “Integrated IntellIoT framework & use case implementations
(final version)”, of Task 5.1 (“Integration & implementation”). This is in line with the overall work plan, whereby Task 4.4
outputs its results mainly to Task 5.1.

More details on the interplay of Task 4.4 with other tasks within the project are shown in Figure 3.

Figure 3. Task 4.4’s interplay with other WPs and Tasks of IntellIoT

1.2 Relation to Objectives & KPIs

The efforts presented herein are aligned with the project’s 4th Objective: “Enable security, privacy, and trust by design
with continuous assurance monitoring, assessment and certification as an integral part of the system, providing
trustworthy integration of third party IoT devices and services”.

The fulfilment of this objective is verified through the KPIs appearing in Table 1 below.

Table 1. Trust-related IntellIoT KPIs, mapped to Objective 4

KPI
ID

KPI Description Validation

4.1

Delivery of a continuous assurance and certification
component supporting: (a) individual risk assessment schemes;
(b) incremental risk assessment schemes, and; (c) hybrid risk
assessment schemes to estimate risk by combining the
outcomes of the schemes in (a) and (b).

D4.8; Delivered through Continuous
Assurance & Certification solution

detailed in Section 2 below.

4.2

Delivery of at least 2 DLT implementations that can adjust level
of trust to capabilities of devices, can integrate proxies, and can
conform to certain latency and reliability requirements, such
that the level of decentralization of device participation is
proportional to its computation-communication capabilities.

Delivered through DLT component
developed within Task 3.4 (deliverable

D3.8), but also briefly described and
integrated with other Trust enablers;

See Subsection 6.3 below.

4.3

Delivery of at least 2 trust-based secure routing algorithms,
applicable for the IoT system, which cover the design
requirements of i) relatively static networks with low mobility
and ii) open networks with high mobility nodes, respectively.

Mapped to Trust-based Secure Routing
component described in Section 4

herein.

36 months
Leader:

SIEMENS

30.09.202301.10.2020

T1.1: Project coordination

36 months
Leader:

SIEMENS

30.09.202301.10.2020

T1.2: Project technical

management

36 months
Leader:

PHILIPS

30.09.202301.10.2020

T1.3: Ethics management

19 months Leader: TTC

30.04.202201.10.2020

T2.1: Use cases specification

& Open Call definition

21 months Leader: TSI

30.06.202201.10.2020

T2.2: Technology analysis &

requirements specification

18 months Leader: SANL

30.08.202201.03.2021

T2.3: Architecture specification

& interoperability

27 months Leader: HSG

31.03.202301.01.2021

T3.1: Interoperable, self-aware

& semi-autonomous MAS

27 months
Leader:

UOULU

31.03.202301.01.2021

T3.2: Distributed AI &

constrained IoT devices

27 months
Leader:

UOULU

31.03.202301.01.2021

T3.3: Human-in-the-loop in

Intelligent IoT Environments

27 months Leader: AAU

31.03.202301.01.2021

T3.4: Decentralized trust via

secure interaction & contracts

27 months
Leader:

SIEMENS

31.03.202301.01.2021

T4.1: IoT/edge infrastructure

management

27 months
Leader:

EURECOM

31.03.202301.01.2021

T4.2: 5G network

functionalities

27 months Leader: AAU

31.03.202301.01.2021

T4.3: Dynamic network

management

27 months Leader: SANL

31.03.202301.01.2021

T4.4: Trustworthy

infrastructure by design

25 months Leader: AVL

30.05.202301.05.2021

T5.1: Integration &

implementation

23 months
Leader:

SIEMENS

30.07.202301.09.2021

T5.2: Deployment, testing &

demonstration

23 months Leader: TSI

30.09.202301.11.2021

T5.3: Validation & evaluation

36 months
Leader:

STARTUPC

30.09.202301.10.2020

T6.1: Dissemination &

ecosystem building

31 months
Leader:

STARTUPC

30.09.202301.03.2021

T6.2: Open Call coordination

29 months Leader: TTC

30.09.202301.05.2021

T6.3: Exploitation & impact

creation

24 months
Leader:

EURECOM

30.09.202301.10.2021

T6.4: Standardization

Open Call 1 Open Call 1 & Open Call 2

Notes:

1) PERT chart is kept on important task

level dependencies for better readability.

2) Project coordination and technical

management tasks are connected to all

tasks in all WPs.

3) Dashed arrows are depicted as feedback

between the respective tasks.

WP1 (Lead: SIEMENS) WP2 (Lead: SANL) WP3 (Lead: UOULU)

WP4 (Lead: AAU)

WP5 (Lead: SIEMENS)

WP6 (Lead: STARTUPC)

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

7

4.4
Development of at least 2 MTD algorithms for: i) local decision
making by an individual agent for its underlying system, and; ii)
horizontal incorporation of trusted agents in the IoT system.

Delivered through MTD component
detailed in Section 5 herein.

1.3 Deliverable outline & delta compared to previous version.

To present the above building blocks, this deliverable is organised as follows:

• Section 2 presents the Security Assurance Platform (referred to as SAP), i.e., the main enabler of the
continuous assurance pillar mentioned above.

• Sections 3, 4 and 5 provide details on core security, privacy, and trust primitives, including the Authentication,
Authorisation and Accounting (AAA) solution adopted for IntellIoT, and the novel Trust-based Intrusion
Detection System (IDS) and Moving Target Defences (MTD) approaches, respectively.

• Section 6 is dedicated to presenting the integration and collaboration between all of IntellIoT’s Trust Enablers
through the dedicated message broker, including the integration between SAP-MTD-IDS and the integration
between the SAP and the DLT -based trust primitives, mostly developed within Task 3.4 (“Decentralized trust
via secure interaction & contracts”).

• Section 7 documents additional security, privacy, and trust efforts within Task 4.4, including the development
of multi-layer monitoring capabilities that enable the corresponding third pillar mentioned above, as well as
other security provisions adopted, encompassing 5G security, and the adoption of best practices and state-
of-the-art approaches for cryptographic primitives and secure-by-default and fail-secure device
configuration.

• Finally, Section 8 provides the concluding remarks.

Considering the changes compared to the previous version of the deliverable, i.e., D4.4 - “Trust mechanisms (first
version)”, the new content presented within this final Task 4.4 deliverable includes:

• Minor updates to the Sections 1 (Introduction) & Section 8 (Conclusions) sections, to bring them up-to-date
with the current deliverable, as the last output of Task 4.4. The Introduction section now also presents the
differences with the previous version of the deliverable.

• A major update of the Security Assurance Platform description in Section 2, to more accurately present SAP’s
final set of features, notably including the Incident Response Orchestration & Automation subcomponent and
the relevant executable “Playbooks”, as well as more detailed information on the Hybrid Assessments; both
key features released in Cycle 2.

• An update to Section 3, detailing the AAA solution integrated within IntellIoT, with updates to reflect the final
status of the component & its enhanced integration with IntellIoT components.

• An update to Section 4, documenting the Trust-based Intrusion Detection component of IntellIoT, with
updates to reflect the Cycle 2 (final) set of features of the component.

• An update to Section 5, describing the Moving Target Defence enablers of IntellIoT, with updates to reflect the
Cycle 2 (final) set of features of the component.

• A minor update to Section 6, to present the final integration of the Trust enablers more accurately, considering
the adjustments that have been made from the Cycle 1 to the Cycle 2 release (& integration) of said enablers.

Finally, in addition to the above, other minor updates were made throughout the deliverable (e.g., editing, language).

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

8

2 CONTINUOUS ASSURANCE AND CERTIFICATION

2.1 Overview

The Security Assurance Platform (SAP) is an integrated framework of models, processes, and tools to enable the
continuous assurance and certification of the security properties of the devices across the IntellIoT infrastructure. It
uses different types of evidence to demonstrate the support for the required properties and award the corresponding
certificate. These include hybrid assessments that consider different attacks surfaces and attacker capabilities by
gathering contextual information (e.g., configuration changes, network, and middleware behaviour), as well as an up-
to-date view of all known vulnerabilities across the IntellIoT deployments, from field to backend. The Security
Assurance Platform:

• Combines runtime monitoring and dynamic runtime testing to ensure correct and effective operation of
security controls.

• Can be hooked to different systems programmatically through appropriate probes (e.g., event captors, test
tools) to obtain the monitoring and/or test evidence required for assurance and/or certification assessments.

• Operates based on models that determine the operational evidence that should be captured from systems and
how it should be assessed (e.g., what conditions it should satisfy) to assess the correctness and effectiveness
of implemented system security controls.

• Enables the runtime assessment of temporal event patterns and rules that can express signature or anomaly-
based patterns.

2.2 Internal Architecture

As shown in Figure 4, internally the SAP is comprised of five main modules:

1. Cyber System Asset Loader: The component responsible for receiving the Security Assurance Model for the
target organization. This model includes the assets of the organization, security properties for these assets,
threats that may violate these properties, and the security controls that protect the assets and is based on
STS’s Assurance Model.

2. Vulnerability Analyzer: The Vulnerability Analyzer is responsible to identify known vulnerabilities of assets
defined within an organisations' asset model. This component automatically constructs the Common Platform
Enumeration (CPE1, a structured naming scheme for information technology systems, software, and
packages) per asset and then retrieves the relevant Common Vulnerabilities and Exposures (CVE2, a
reference-method for defining unique, common identifiers for publicly known information-security
vulnerabilities and exposures) entries, by searching in a local copy of the National Vulnerability Database
(NVD3, a U.S. government repository of standards-based vulnerability management data, maintained by the
National Institute of Standards and Technology, NIST4). This copy is continuously updated by utilising an in-
house component that fetches the latest known CVEs from NVD's JSON files.

3. EVEREST: A runtime monitoring engine, built-in Java, that offers an API for establishing the monitoring rules
to be checked. This module is composed of two submodules: (a) the monitoring database and (b) the monitor.
The role of the module is to forward the runtime events from the application’s monitored properties and finally

1 https://nvd.nist.gov/products/cpe
2 https://cve.mitre.org/
3 https://nvd.nist.gov/
4 https://www.nist.gov/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

9

obtain the monitoring results. EVEREST basic implementation is based on Drools logical language, while it is
modelled in Event Calculus, a first order temporal logic that can both represent and reason actions and their
effects over time. By abstracting the above concepts, Event Calculus basic elements are comprised of events
and fluents. EVEREST performs continuous assessments and is based upon these core logic factors of Event
Calculus in terms of comprising the rules continuously checked in a system.

4. Event Captors: The Event Captor is a tool, implemented In Java, that based on collected data and triggering
events, formulates a rule or a set of rules and pushes the latter towards the monitoring module for evaluation.
Data and events are mostly collected through Elastisearch5 based on lightweight shippers (namely Beats),
such as Filebeat6, Metricbeat7, Packetbeat8, etc., that forwards and centralizes log data. Data can also be
collected through Logstash, an open server-side data processing pipeline that ingests data from a multitude
of sources transforms it, and then sends it to Elasticsearch. The Event Captor is initiated through the
respective REST calls from the monitoring module. In addition, Elasticsearch provides build-in mechanisms
to support the secure communication with SSL communication and hence the interaction is performed via
the HTTPS protocol.

5. Dynamic Tester: The component responsible for initiating the testing assessment. The module consists of
two components: (a) the dynamic tester or manager and (b) the dynamic testing tool.

Moreover, the operation of the platform relies on the following databases:

• EVEREST Database: Holds the monitoring rules and the overall process done by EVEREST if the templates
and other values important for monitor procedure to conclude.

• Security Assurance Database: Holds the cyber system asset model, its components, and the results of the
assessments.

• Vulnerabilities Database: Holds the known vulnerabilities, as retrieved from the NVD database.

Finally, the Assurance tool interfaces with a set of external components, namely:

• Message Broker (RabbitMQ9): The message broker is a messaging bus that allows communication between
the external components and the assurance platform using AMPQ10 protocol. This will also act as the Trust
Broker in IntellIoT; see Sect. 6.

• OpenVAS11: This is a software framework of several services and tools offering vulnerability scanning and
vulnerability management. The tool is used as part of the dynamic testing offered by the Assurance Platform.

5 https://www.elastic.co/
6 https://www.elastic.co/beats/filebeat
7 https://www.elastic.co/beats/metricbeat
8 https://www.elastic.co/beats/packetbeat
9 https://www.rabbitmq.com/
10 https://www.rabbitmq.com/
11 https://www.openvas.org/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

10

Figure 4. High-level architecture diagram of the Security Assurance Platform

2.2.1 CYBER SYSTEM ASSET LOADER

The Asset Loader module is responsible for receiving the Security Assurance Model, written in the Security Assurance
Grammar, for the target organisation. The latter utilises the ANTLR4 parser generator to create the grammar and read,
process, execute, or translate the structured text inside it. Lastly, the Model includes the assets of the organisation,
security properties for these assets, threats that may violate these properties and the security controls that protect
the assets. The internal architecture of the module is shown in Figure 5.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

11

Figure 5. Internal architecture of SAP’s asset loader module

2.2.2 VULNERABILITY ANALYZER

The Vulnerability Analyzer module is responsible for loading the known vulnerabilities (of the identified assets) and
updating the assurance platform depending on the organisation's assets included in the assurance model. It consists
of the following sub-components:

• Job Scheduler
• JSON module
• CPE constructor
• Assessment Controller
• SSE Controller

The JSON module’s main functionality refers in getting-updating the CVEs as well as uploading-retrieving them from
the Assurance Database. It also retrieves and sets the assessment models and the assessment criterion. The CPE
constructor is responsible to construct the CPE for the assets involved in a specific assessment, whereas the
Assessment Controller is responsible to initiate a new assessment and check for vulnerabilities in assets based on
their CPE. Lastly, the JOB scheduler is responsible of managing the assessment results and updating the CVEs
periodically. The internal architecture of the module is shown in Figure 6.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

12

Figure 6. Internal architecture of SAP’s vulnerability module

2.2.3 DYNAMIC TESTER

The Dynamic Tester module (see Figure 7) is responsible for initiating the testing and reporting the results to the
assurance database. It consists of the following sub-components: Model Loader; Testing Manager; Report Loader;
Results Uploader and its REST Interface.

The Model Loader is responsible for translating assessment models to parameters to be utilized by testing tools. Based
on this information the Testing Manager is responsible for initiating and scheduling the testing tools to perform the
security assessments.

Upon finalization, the results of the security assessments are fed into the Report Loader module which is responsible
to interpret them to a format defined by assurance model. The formatted results are then uploaded to assurance
database by the Results Uploader module.

Finally, the REST interface module provides the necessary REST functions that are utilized by the security assurance
platform GUI to enable the aforementioned functions.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

13

Figure 7. Internal architecture of SAP’s testing module

2.2.4 EVEREST MONITORING

EVEREST is responsible for initiating, coordinating, and reporting the results of the monitoring process. This (Java-
based) runtime monitoring engine is comprised of two basic submodules (a) the monitoring database and (b) the
monitor. It offers an API to other SAP components to instantiate the monitoring rules to be processed. When a pattern
is activated through this process, it undertakes the responsibility of checking conditions regarding the runtime
operation of the components that implement the pattern. These conditions are specified within patterns by
monitoring rules expressed in Event Calculus Assertion (more details on that below). EVEREST can detect violations
of monitoring rules against streams of runtime events which are sent to it by different and distributed event sources
through the Event Captor Module. It also able to:

• Deduce information about the state of the system being monitored using assumptions about the behaviour of
a system and how runtime events may affect its state.

• Detect potential violations of the monitoring rules by estimating belief measures in the potential occurrence
of such violations.

• Perform diagnostic analysis to identify whether the events causing a violation are genuine or the result of a
system fault or an attack.

The internal architecture of this module is shown in Figure 8. EVEREST interacts with the REST controller that initiates
and provides actions for the monitoring assessments. It is implemented in a Docker environment which provides
flexibility, portability, and parallel execution capabilities. This component will be able to leverage monitoring
mechanisms, such as the Intrusion Detection System (IDS) and Event Captors deployed on IntellIoT’s devices (more
event captor details are provided in Sect. 7.1) to provide an evidence-based, certifiable view of the security posture of
the overall system, with accountability provisions for changes that occur in said posture and the analysis of their
cascading effects, supporting the runtime checking based on sets of associated claims and metrics. The methodology
and procedures for the automation of the security Monitoring tool is tailored to specific security standard, service level
agreements and/or legal and regulatory obligations (e.g., GDPR).

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

14

Figure 8. Internal architecture of SAP’s EVEREST monitoring framework

The rules and metrics that need to be audited need to be specified within security and dependability patterns (referred
to as S&D Patterns) using an XML based language, called EC-Assertion. Based on event calculus, EC assertion is a first-
order temporal logic language primarily developed not only to represent but also to reason about actions and their
effects over time. The basic elements of Event Calculus are events and fluents. An event in EC is specified as
something that occurs at a specific instance of time and is of instantaneous duration. Furthermore, it may cause some
change in the state of the reality that is being modelled while this state is represented by fluents. EC is implemented
in Everest in the Drools12 logical language, while some functionality is further implemented in Java. Drools is a
collection of tools that allow us to separate and reason over logic and data found within business processes.

To represent the occurrence of an event, EC uses the predicate Happens which represents the occurrence of an event
e that occurs at some point in time t within the time range (t1, t2) and is of instantaneous duration. The EC
predicate initiates(e, f, t) signifies that a fluent f starts to hold after the event e occurs at time t. The EC
predicate terminates(e, f, t) signifies that a fluent f ceases to hold after the event e occurs at time t. An EC
formula may also use the predicates initially(f) and holdsAt(f,t) to signify that a fluent f holds at the start
of the operation of a system and that f holds at time t, respectively.

EC-Assertion adopts the basic representation principles of EC and its axiomatic foundation and introduces special
terms to represent the types of events and conditions that are needed for runtime monitoring. More specifically, given
its focus on auditing the operation of software systems at runtime, events in EC-Assertion can be invocations of
system operations, responses from such operations, or exchanges of messages between different system
components. To represent these types of events, EC-Assertion defines a specific event structure that is syntactically
represented by the event term event(_id, _sender, _receiver, _status, _sig, _source).

12 https://www.drools.org/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

15

In this event term:

• _id is a unique identifier of the event;

• _sender is the identifier of the system component that sends the message/operation call/response;

• _receiver is the identifier of the system component that receives the message/operation call/response;

• _status is the processing status of an event (i.e., REQ if the event represents an operation invocation and RES
if the event represents an operation response);

• _sig is the signature of the dispatched message or the operation invocation/response that is represented by
the event, comprising the operation name and its arguments/result;

• _source is the identifier of the component where the event was captured

To provide an example of an EC monitoring rule, let us consider the case of a Monitoring Rule for Access Control,
whereby the access to a webpage’s (e.g., patient management web front end) administration page is monitored. Let
us assume that said administration webpage is located at “Home_page/wp-admin/admin_login.php”. Two
rules are created in order to check if the admin services are only executed by admin users, and not by simple users,
which could, for example, indicate that somehow a malicious user managed to perform privilege escalation and gain
access to said restricted webpage. The two rules and the corresponding triggers would be as follows:

• Rule 1 – Violation of access control by malicious user
o Event Type: event_admin_login
o Event_args{}: {event_time, John_Doe, visited, Home_page/wp-

admin/admin_login.php, 152.185.12.17, simple_user}
o Event Trigger: Happens(event_admin_login, event_args{…, User_role}, time) ^

User_role=simple_user -> Violation
• Rule 2 – Normal access of admin services

o Event ID: event_admin_login
o Event_args{}: {event_time, admin, visited, Home_page/wp-

admin/admin_login.php, 172.180.10.15, administrator}
o Event Trigger: Happens(event_admin_login, event_args{…, User_role}, time) ^

User_role=administrator -> Compliance

Similar rules can be defined for different monitoring events across the layers of protected infrastructure, from the
hardware to the network and to the process (application, operating system, etc.) level.

Finally, in terms of deployment, EVEREST can be operated on a containerized environment, while It can support
Kubernetes clustered based architecture for scalable and distributed event recognition for the core part, combining
it with cloud deployment compliancy (crucial for introducing it as a microservice, when needed).

2.3 The IntellIoT Assurance Model

Being model-driven, at the core of the operation of the Security Assurance Platform is the specification of the
associated Assurance Model. Thus, the IntellIoT Assurance Model must be defined, and should holistically cover
IntellIoT and its Use Case deployments, in this case.

In more detail, the assurance model should specify all assets of the target cyber system to be protected, known threats
that may affect the physical or software components of the system; assumptions regarding the external environment
of the cyber system and the behaviour of agents (human- or system-agents) related to it that may affect it (i.e., prevent
or introduce threats); and security controls used to mitigate the risks arising from the threats.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

16

The assurance model also specifies assessment procedures, to identify vulnerabilities, assess the proper function of
security controls, and to determine how to detect and respond to cyber-attacks. To support this feature, it can also
specify any assessment tools that should be employed for the aforementioned assessments prior the deployment of
the system (i.e., static analysis and testing tools) or during its operation (i.e., monitoring and dynamic testing tools).
Moreover, it specifies parameters determining how the attacks may manifest, how the security controls may respond
to them (e.g., the attack manifestation events captured and detection time, the undertaken response actions) and the
outputs that the deployed assessment tools will generate for the situation.

Figure 9. Part of the Assurance Model, showing a view of the Asset sub-model

Since it encompasses all the above, the final model is quite complex - for the sake of brevity, only a high-level
description is provided herein. More specifically, the Assurance model consists of the following:

• Security Assurance Model Element: The core element of the model, inherited by every other class within the
model. Its specification includes the name of the element, the timestamp of the insertion of the element in
the assurance platform, the timestamp of the deletion of the element from the assurance platform, a brief
description of the element that states its purpose, and the user that inserted this element in the platform.

• Asset sub-model: Describes the different assets of the cyber system (i.e., all IntellIoT assets). In addition to
the attributes inherited from the Security Assurance Model Element, it also includes the owner (person that
owns the asset), its value (in monetary terms) and a number of associations, such as if it is protected by one
or more security control(s), if it is contained within another asset and/or if it contains and/or controls other
asset(s), and its exposed interfaces. Moreover, the Asset sub-model includes a number of sub-models for
different types of assets; namely: Physical Infrastructure Asset sub-model, Hardware Asset sub-model,

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

17

Software Asset sub-model, Data Asset sub-model, Person Asset sub-model, Process Asset sub-model and
Security Control Asset sub-model.

A partial view of the Assurance Model, covering the different types of assets in the Asset sub-model and their
relationships, is provided in Figure 9.

To create an accurate instance of the IntellIoT assurance model, a specific process is established whereby all partners
(i.e., asset owners) are involved. In more details, all Asset sub-model fields needed for assets’ specification have been
mapped onto tabs and tables of an Excel-based form (see Figure 10 and Annex A – IntellIoT Asset Model specification
form). Said file was created to allow all partners to define the needed fields for their assets (IntellIoT components, as
involved in each of the three use cases) without having to interact with the Assurance Tool itself.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

18

Figure 10. Partial view of the IntellIoT Asset Model specification form (cover page with instructions) – full view in Annex A
– IntellIoT Asset Model specification form

In addition to the Excel-based form mentioned above, the asset model can be populated through the SAP front-end (a
“wizard” guides the user through the steps), though this is a more time-consuming process, not intended for bulk
specification of assets.

A third approach is using the Asset Model Grammar that is aligned with the structure of the underlying asset model.
This method enables the bulk specification of assets within the SAP, where using the Excel form is considered
inefficient (e.g., large number of assets). An example of an asset definition (in this case an instance of the Ubuntu
Operating System) using the Grammar is provided below:

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

19

SoftwareAsset(vendor("Ubuntu"),version("18.04

LTS"),name("Ubuntu"),kind(Service),type(PAL),project("IntellIoT"),organisation("Sph

ynx Analytics Ltd."),description("Server OS"))

Additional samples of asset definitions through the Grammar are provided in Annex B – Asset Model Grammar.

Once the process is completed, three instances of the IntellIoT Assurance Model will be derived, one for each use case
deployment, covering the specific assets involved in said deployment. These will, of course, first reflect the Cycle 1
release and demonstrators of IntellIoT, while a second version of the models will be specified before the Cycle 2
demonstration. The latter will cover both the new/updated components involved in Cycle 2, but also the extended Use
Case environments that will be used for the final validation.

2.4 Model-driven Assessments

The Assurance Tool, based on the IntellIoT Assurance Model described in the previous section, performs various types
of security assessments based on the corresponding assessment models. More specifically, it supports:

(i) Monitoring Assessments;
(ii) Vulnerability Analysis Assessments;
(iii) Dynamic Testing Assessments;
(iv) Hybrid Assessments, combing (A)-(C) above.

Figure 11 presents the Assurance Tool Assessment page that allows the operator at the SAP (i.e., SAP user) to: (a)
initiate a new assessment, (b) upload an existing assessment report and (c) view the existing assessments. Each
existing assessment holds a number of general information such as: (a) the assessment model that was utilised (e.g.,
NVD Vulnerability Assessment), (b) the assessment profile that was used (e.g., focusing on Confidentiality), (c) the
status of the assessment (e.g., ongoing), (d) the assessment’s initial detection date, (e) how long the assessment is
valid (this is mostly used by the monitoring assessment), (f) when the assessment was last checked and (g) the number
of current assessment findings.

Figure 11. Listing of executed types of Security Assessments on SAP front-end

A user can examine the results of an assessment and some basic information about it by clicking on the “Assessment
Group ID” column. As shown in Figure 12, the user is being presented with the basic information of the assessment
such as a brief description, the project it belongs to, its creator, the date it was last updated, the tool/service that is
being used, the security properties it checks, its status, the involved assets, and a brief description of the assessment
profile. Some key statistics and other information are provided to the user in the form of charts and graphs (e.g.,
distribution of findings by severity, most vulnerable assets). Further below, the user can see individual assessment
results, with some general parameters such as the assessment type, the asset it involves, the security property, the

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

20

tool likelihood and a universal normalized likelihood, an initial detection timestamp (if applicable), the time it was last
checked and the time it ceased to exist (if applicable).

Figure 12. An example of an assessment results screen in the SAP front end.

More specific information is provided in the screens of the different assessment types (i)-(iv), customised to better
present the different types of assessment results. For instance, a specific result from a Vulnerability Assessment (i.e.,
using the Vulnerability Module – see Sect. 2.2.2) is shown in Figure 13, whereby CVE-2020-11993, pertaining to certain
versions of the Apache HTTP server is found in the modelled assets. In this case, the presented information follows
the latest version (V3.1) of the Common Vulnerability Scoring System (CVSS13), that provides a standardised way to
capture the principal characteristics of a vulnerability and produce a numerical score reflecting its severity.

13 https://www.first.org/cvss/v3.1/specification-document

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

21

Figure 13. Viewing details of a specific finding of a Vulnerability Assessment

Another example, this time expanding on a specific finding of a Dynamic Testing Assessment carried out using the
OpenVAS tool (i.e., using the Testing Module – see Sect. 2.2.3) is shown in Figure 14. In this case, a finding is presented
that pertains to the SSH server found during the testing, and the tool identifies a specific vulnerability that stems from
a misconfiguration of said server (revealed by directly interacting with the server). Here additional fields are provided,
such as how the tool discovered the vulnerability, the confidence in the result (from 0-100, with 100 being that the
vulnerability is certainly exploitable), and recommendations to mitigate the finding.

Figure 14. Viewing details of a specific finding of a Dynamic Testing Assessment

Finally, Figure 15 presents details on a finding from a Monitoring Assessment (i.e., using the EVEREST Monitoring
Module, as detailed in Sect. 2.2.4). Here the finding is created through the “Violation” of a monitoring rule that was
defined to observe for a specific pattern that may indicate ransomware activity. The result provides details on which
Event Captor triggered the rule (i.e., where the violation was observed), the exact source and receiver, the time stamp,
and other details that allow to uniquely identify the event (and, consequently, the suspicious behaviour), allowing
triggering of appropriate mitigation actions, if needed (e.g., through the MTDs), and providing the necessary evidence
required for audit purposes.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

22

Figure 15. Viewing details of a specific finding of a Monitoring Assessment

Finally, in terms of Hybrid Assessments (i.e., the most complex assessment type), a purpose-defined language is
developed – CRISES - to support such Hybrid Assessments that will combine the results from other Assessments (as
the ones shown above) based on criteria defined by the user.

In more detail, CRISES is a pipelined, query-type language that allows for the definition of arbitrary risk models for the
propagation of assessments produced by SAP assessments. CRISES also allows the execution of a hybrid analysis, i.e.,
an analysis that combines two or more of SAP’s assessments.

CRISES can be as simple as:

FETCH y1:Assessment_Model_Execution, y2:Assessment_Model_Execution, y3:Assessment_Model_Execution,
x:Asset, z:Asset, ar1:Monitoring_Assessment_Result, ar2: CTI_Assessment_Result,
ar3:Monitoring_Assessment_Result

SUCH THAT (y1.INVOLVES=x AND y2.INVOLVES=x AND y1.PRODUCES=ar1 AND y2.PRODUCES=ar2 AND y3.INVOLVES=z
AND y3.PRODUCES=ar3)

FILTER (x.ASSET_TYPE=DATA AND z.ASSET_TYPE=PROCESS, ar1.timestamp IN (CURRENT_TIMESTAMP -
365,CURRENT_TIMESTAMP) AND x.CATEGORY=authentication/authorization AND z.DEPENDS=x)

GENERATE

ASSESSMENT_RESULT nar.assessment_Result

ASSET nar.asset IN (z)

SECURITY_PROPERTY (nar.Security_Property = ar3.Security_Property)

LIKELIHOOD (nar.likelihood = MAX((ARO(ar2)),(COUNT(ar1.likelihood=1)/COUNT(ar1))))

VALUE (nar.value = FORMULA(ar3.variable(downtime)*z.value))

As you may observe, in CRISES each line of the query is a transformation of the previous line's result.

Further, CRISES is designed considering the following principles:

• Pipelined: A CRISES query is a linean pipeline of transformations.
• Extensible: CRISES is based on SPHYNX's Assurance Model. As the model evolves, CRISES will be extended to

support the definition/utilisation of the newly introduced components (e.g. new assets or assessments).
• Analytical: CRISES queries are analytical, as they emphasize data transformations, and speed.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

23

Therefore, through the SPA front-end, CRISES (hybrid) assessments will be able to be defined and executed.

2.5 Orchestration, Automation & Incident Response

A novel tool showcased in Cycle 2 of IntellIoT is the Incident Response tool, being considered part of SAP’s toolset, that
allows the orchestration & automation of the framework’s various Trust enablers to respond to various incidents
detected.

This enabler is based on the Sphynx Incident Response (IR) platform, which is a system that enables the manual or
automated execution of “Collaborative Automated Course of Action Operations” (CACAO [10]) security playbooks.
CACAO is an OASIS specification that provides a playbook schema and a taxonomy that standardizes the way one can
create, document, and share defenders’ cybersecurity operations processes and procedure.

The platform can be set up either as a standalone system or as a module integrated with the SAP. As a standalone
solution, the IR platform can import, export, and execute CACAO security playbooks triggered by a variety of third-
party tools utilizing each playbook's REST API. As a module of the SAP, the IR platform can be used to execute security
playbooks triggered by the SAP’s components, such as EVEREST and CRISIS and utilize information obtained by the
Asset Model. Also, the IR platform can be used to orchestrate the SAP’s components, in addition to IntellIoT’s other
trust enablers.

Overall, this tool offers a graphical drag-n-drop interface for creating and editing CACAO security playbooks, that can
later be executed or exported as CACAO JSON files following the CACAO specification. Figure 16 shows how a playbook
(in this case a preventative playbook related to the FuzzyPanda malware) can be defined within the tool’s GUI.

Finally, the IR platform also offers an interactive dashboard that provides real-time views of the system's status and
the execution of security playbooks along with high- and low-level logs, KPIs, user notification and other information.

Figure 16. Sample IR playbook (top) defined within the IRM editor (bottom)

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

24

2.5.1 IR TOOL ARCHITECTURE

The Incident Response platform is composed of five main components as presented in Figure 17. The various
components can be co-located on a single host or distributed across multiple hosts. Each component is isolated in its
dedicated Docker container while native deployment is also available but not recommended. Also, the components
should preferably be deployed on a secured and monitored infrastructure, outside of the target organization to ensure
their uninterrupted and tamper-proof execution.

Figure 17. IR Platform architecture overview.

More details on each component are provided below:

• IR Web GUI: The Web-based front-end through which the end users and administrators can interact with and
control the IR platform. The GUI is implemented using the Angular14 framework and provides dedicated views for
browsing the available playbooks and allows users to enable or disable a playbook’s availability for execution. Also,
the GUI offers real-time views of enabled playbooks through which the platform’s operators can monitor, start,
stop, or restart a playbook’s execution. The monitoring view includes an interactive, real-time graph presenting
each playbook’s step status as the playbook is executing, high- and low-level logs, the event that triggered the
execution and various statistics, such as execution metrics. Also, administrators can manage the available
playbook execution engines, create, or delete engine instances and assign playbooks to the available engines.
Finally, the GUI provides a graphical drag-and-drop editor where playbooks can be edited or created by modifying
their execution graph, exported as CACAO JSON files, or imported via a valid CACAO JSON file.

• IR Controller: The Java/Spring Boot-based15 REST controller that orchestrates the GUI, the Engine(s), the
Editor(s) and the IRDB. The controller provides separate APIs for managing (i) the available IR engines, (ii) the
Editors used by each user, (iii) playbook modifications, (iv) logging capabilities, (v) playbook availability and
execution status, (vi) metrics and KPIs. The IR Controller can be executed on a dedicated host, isolated from the
rest of the platform’s components.

14 https://angular.io/
15 https://spring.io/

https://angular.io/
https://spring.io/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

25

• IR Engine: A sand-boxed Node-RED16 instance that hosts the CACAO security playbook engine module that serves
as the platform's playbook execution engine. The instance's native Web GUI is disabled, and no playbook
modifications are allowed for playbooks running in this instance. The engine module is developed using NodeJS,
HTML, CSS, and Jolt Specs17. An IR platform instance can utilize more than one engine for redundancy, isolation,
testing or scalability. Engine instances can be managed through the IR Web GUI or directly through the respective
Engine REST API.

• IR Editor: A sand-boxed Node-RED instance that hosts the CACAO security playbook engine module that serves
as the modification space for new or existing playbooks. Playbooks in this instance can only be modified and
cannot be executed through this instance. IR editor instances are unique per user. Each Editor instance is created
on request and is discarded after use. The engine module found in these instances also contains the translate
node that responsible for transforming CACAO playbooks to Node-RED flows. Editor instances can be managed
through the IR Web GUI or directly through the respective Editor REST API.

• Irdb: A PostgreSQL18 database that stores all the required information for playbook execution and storage. This
database is detached from the rest of the SPAP's databases. The database is maintained under the IRDB
directory.

2.5.2 PLAYBOOK DETAILS

2.5.2.1 PLAYBOOK STEPS’ OVERVIEW

The IR platform enables the design and execution of CACAO security playbooks following the v1.1 CACAO specification.
Such playbooks can be composed of the following seven steps: (i) start, (ii) end, (iii) single, (iv) parallel, (v) if, (vi) switch
and (vii) while step.

The start and end steps indicate the starting and ending point of each playbook and thus are always required. The single
steps are responsible for executing the actions indicated at each execution point. These actions can be shell
commands, execution of REST API calls or requests to be executed manually by a human operator. The parallel steps
indicate the execution of a set of steps in parallel while the if and switch commands designate branching based on a
condition. Finally, the while steps indicate looping based on a condition. The steps are linked together, starting from
the start step and ending at the end step, thus composing the playbook’s logic as a graph with each step being a node.

The IR platform also provides an extra step, dedicated to translating CACAO playbooks to IR Engine executable
playbook flows in real-time, named translate. In the Engine, each step is available as a graph node, that can be dragged
and dropped on the canvas in order to design or edit a playbook. The list of available steps is presented in Figure 18.

16 https://nodered.org
17 https://github.com/bazaarvoice/jolt
18 https://www.postgresql.org

https://nodered.org/
https://github.com/bazaarvoice/jolt
https://www.postgresql.org/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

26

Figure 18. CACAO playbook steps as drag-and-drop enabled graph nodes.

2.5.2.2 PLAYBOOK DESIGN

Designing a playbook is performed in a drag-and-drop fashion, starting with placing a start and an end step on the
canvas. Then, the playbook’s logic is created by placing, single and conditional steps on the canvas and linking them
together with edges connecting the various steps. The execution follows the edges from the start step to the end step
and branches according to the specified conditional steps and the evaluation of each condition.

An example of a playbook containing three single steps that will be executed in sequence is presented in Figure 19. The
execution starts from the leftmost node (the start step) and follows the edge towards the first single step, named
“Receive white list”. This step is responsible for performing the appropriate action(s) and command(s) that will retrieve
the specified IP whitelist in this example. Steps can use variables to write and read data and these variables are passed
to the following steps while they are executed. Once this step is finished, the execution follows the edge towards the
next single step named “Update Firewall”. This step is now responsible to update the firewall with the previously
retrieved white list, utilizing the variables set by the previous step. Then, the playbook executes the “Notify Admin”
single step, responsible to notify the network administrator about the operations performed by the playbook. The
execution terminates upon reaching the end step.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

27

Figure 19. A simple CACAO playbook performing three operations.

This simple playbook can be executed by the Engine or exported as a CACAO JSON file to be shared across other
parties. While the playbook’s parameters might require tuning based on the target system, the playbook’s logic is
preserved when sharing the playbook. For example, this playbook handles the logical operation of retrieving an IP
white-list, updating the firewall with the white-list, and then notifying the administrator. However, the commands that
have to be executed to perform these actions might need to be modified depending on the target system. For example,
the playbook might need to retrieve the white list from a different location, update a different type of firewall system
and notify a different administrator when it is utilized by another organization.

2.5.3 INTELLIOT USE CASE -SPECIFIC PLAYBOOKS

In this section we present the playbooks designed to be utilized within each of IntellIoT’s use cases, for the Cycle 2 (&
final) demonstration of the project. These follow the enhanced use case scenario descriptions that have been
documented and planned for Cycle 2, as detailed in deliverable D2.4 – “Use Case specification & Open Call definition
(final version)”. It is expected that updates will take place once the playbooks are actually tested in the final IntellIoT
integrated framework, but any such updates will be documented in the relevant WP5 deliverables.

2.5.3.1 USE CASE 1

In this use case, the playbook presented in Figure 20 is used to notify the administrators about mitigation plans
performed by the MTD. Once there is a status change event, the playbook is triggered an its first operation is to receive
information about the current MTD status. Then, the playbook evaluates the current status to the previous and if a
change is observed, it notifies the administrators via e-mail. No action is performed if the event that triggered the
playbook does not involve changes to MTD’s status.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

28

Figure 20. Indicative Use Case 1 playbook.

2.5.3.2 USE CASE 2

In this use case, two separate playbooks are utilized, as presented in Figure 21. The first playbook is triggered to
mitigate a ransomware attack while the second is triggered to mitigate a botnet malware infection. Both playbooks
start by isolating the host from the network to prevent further malware contamination in the system and request a
CRISES assessment. Then, the ransomware-specific playbook notifies the administrators that a ransomware
mitigation is taking place and proceeds with removing the malicious executable. Once the system is disinfected, the
playbook restores possibly encrypted files from the designated backup. Then, it restores the host’s connection and
terminates.

The botnet-specific playbook generates a different notification message and proceeds with removing all botnet-
related files and executables. Finally, when the attack is mitigated, it restores the host’s network connection and
terminates.

Figure 21. Indicative Use Case 2 playbook.

2.5.3.3 USE CASE 3

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

29

In this use case, the playbook is set to listen for events indicating suspicious robot activity. Once such an event is
captured, the playbook notifies the administrator about the suspicious event and requests a confirmation of whether
to proceed with the mitigation. If the administrator responds positively, the playbook logs the event and the
administrator’s response and the triggers the MTD. Otherwise, only the event and the negative administrator response
are logged. The playbook is presented in Figure 22.

Figure 22. Indicative Use Case 3 playbook.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

30

3 AUTHENTICATION, AUTHORISATION AND ACCOUNTING
Authentication, Authorization, and Accounting (AAA) in IntellIoT is provided through a framework that allows legitimate
users or applications to gain access to protected resources, thus ensuring network security. It can enforce policies
(e.g., define multiple permission levels) and audit usage.

The solution selected for IntellIoT is Keycloak19. Keycloak is an open-source Identity and Access Management tool for
modern applications and services. It uses industry-standard protocols like OpenID Connect20 for authentication and
OAuth 2.021 [1] for authorization (OpenID Connect is an extension to OAuth 2.0). This allows for easy integration and
well-regarded security.

Keycloak includes a dedicated server that centrally controls user access. This decouples local security configuration
considerations and allows for better scalability and less administrative tasks. For example, if a user is added in
Keycloak and configured to have access on some servers within the network, no additional configuration to those
servers is needed. The same applies for either adding or revoking user permissions or adding a new resource that some
users need to have access to. Furthermore, the servers available on the network are not tasked with storing user
credentials locally, which is a preferable approach from both a security and an administrative perspective.

Authorization is the process of evaluating to what extent a user can access a resource. With OAuth 2.0, the following
four roles are defined:

• Resource Owner (i.e., any entity that owns protected resources, such as files)

• Resource Server (e.g., the actual server that keeps the files)

• Client (e.g., an application that requests access to a resource from the server is a client)

• Authorization Server (the Keycloak server itself in this case)

When a Client wants to access a resource on behalf of an Owner in the Server, it first contacts the Authorization Server.
The Authorization Server issues a JSON Web Token (JWT) [3] that grants limited access to the resources, which can
then be used to access the Resource Server. JWT tokens are also a standard format based on JSON, supported by
libraries for various programming languages22. An example id token from authorization is:

{

 "exp": 1637007044,

 "iat": 1637006744,

 "auth_time": 1637006744,

 "jti": "fc16ab93-321f-4546-82a7-49f3ecf2b5bf",

 "iss": "http://localhost:8080/auth/realms/myrealm",

 "aud": "myclient",

 "sub": "8007e9f0-db9e-412b-aff8-7775c4088d92",

 "typ": "ID",

 "azp": "myclient",

19 https://www.keycloak.org/
20 https://openid.net/connect/
21 https://oauth.net/2/
22 https://jwt.io/

http://localhost:8080/auth/realms/myrealm

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

31

 "nonce": "35aa914f-a761-47d6-814e-be1119b9baec",

 "session_state": "716beddd-14e0-49ca-9081-a6f2a76e881d",

 "at_hash": "9VSilBvnLGVgqtyMYhkHUg",

 "acr": "1",

 "sid": "716beddd-14e0-49ca-9081-a6f2a76e881d",

 "email_verified": true,

 "preferred_username": "myuser"

}

Authentication is the process of identifying a user. OpenID Connect defines three roles:

• End User (i.e., entity that needs to be authenticated)

• Relying Party (the application/server that asks for a user to authenticate himself/herself before accessing it)

• OpenID Provider (the server providing the actual authentication, i.e., Keycloak in this case)

Similarly, to the authorization case, a JWT token is used, that contains additional information to signify the
authentication process. An example access token from authentication is:

{

 "exp": 1637007044,

 "iat": 1637006744,

 "auth_time": 1637006744,

 "jti": "a7b83fea-c54e-4af1-83e9-3ed4e5a2b0c2",

 "iss": "http://localhost:8080/auth/realms/myrealm",

 "aud": "account",

 "sub": "8007e9f0-db9e-412b-aff8-7775c4088d92",

 "typ": "Bearer",

 "azp": "myclient",

 "nonce": "35aa914f-a761-47d6-814e-be1119b9baec",

 "session_state": "716beddd-14e0-49ca-9081-a6f2a76e881d",

 "acr": "1",

 "allowed-origins": [

 "http://localhost:8000"

],

 "realm_access": {

 "roles": [

 "default-roles-myrealm",

 "offline_access",

http://localhost:8080/auth/realms/myrealm
http://localhost:8000/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

32

 "uma_authorization",

 "myrole"

]

 },

 "resource_access": {

 "account": {

 "roles": [

 "manage-account",

 "manage-account-links",

 "view-profile"

]

 }

 },

 "scope": "openid email profile",

 "sid": "716beddd-14e0-49ca-9081-a6f2a76e881d",

 "email_verified": true,

 "preferred_username": "myuser"

}

Accounting is the last functionality provided which is about monitoring authentication and authorization events for
auditing. These are clustered in two categories: the login events and the admin events. Login events are generated
during normal operation and cover all authentication and authorization aspects. Some basic examples are 'Login',
'Login Error', 'Register' and 'Logout', as shown in Figure 23.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

33

Figure 23. Login events in the Accounting subsystem of Keycloak

Admin events are generated during Keycloak administration and cover any action that can be performed from within
the administration web UI. Example of such events are 'Create/User', 'Create/Group' and 'Action/User' (see Figure 24).

Figure 24. Admin events (e.g., user creation) as recorded in the Accounting subsystem of Keycloak

Every action can be recorded and stored in the Keycloak database as well as the system log. For example, a system log
for a 'Login' event is shown below:

Nov 12 11:33:16 mathousalix oauth2-aaa[2010]: 09:33:16,343 DEBUG

[org.keycloak.events] (default task-7) type=LOGIN, realmId=master,

clientId=security-admin-console, userId=8a28a08b-c8f2-4fb2-a34d-2867033b5230,

ipAddress=172.20.0.1, auth_method=openid-connect, auth_type=code,

response_type=code, redirect_uri=http://localhost:8080/auth/admin/master/console/,

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

34

consent=no_consent_required, code_id=ac84a4c0-0e3f-4490-80ec-8d3e0bf9d504,

username=admin, response_mode=fragment, authSessionParentId=ac84a4c0-0e3f-4490-

80ec-8d3e0bf9d504, authSessionTabId=t6PT86TqkU4

In the following two subsections, two approaches in the deployment of Keycloak in IntellIoT are presented. The first
one is a containerised direct deployment of Keycloak, while the second one uses an intermediate reverse proxy node
between a web application and a service that requires authentication and authorization.

3.1 Direct deployment

To facilitate integration with the IntellIoT deployments in the different use cases, Keycloak will be used as a Docker23
container, allowing to be easily spawned in different use case environments.

An example authentication for an application24 is showcased in Figure 25. A newly created instance of Keycloak
contains only an administrator account and a default Master realm. A realm is a self-contained configuration, isolated
from other realms. It aggregates all the relevant information such as the users, groups, roles that comprises a secure
environment.

Figure 25. Keycloak homepage

As shown in Figure 26 and Figure 27, a new realm, can be created to support the IntellIoT use cases (a realm per use
case deployment). We can afterwards start adding all the details that make up the realm. For this example, we have
added a group (iot_group), a user (iot_user), a client (iot_client) and a role (iot_role). The user is mapped to the group,
client, and role. This mapping defines what the user can do.

23 https://www.docker.com/
24 https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

35

Figure 26. First administrator login to Master realm

Figure 27. Newly created IntellIoT realm

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

36

A sample application is created to test and showcase Keycloak's capabilities (see Figure 28). When the Login button is
clicked, a redirect happens to the Keycloak Authentication Server for the user to login (see Figure 29). The application
must know where the Keycloak Server is and the realm it needs to get access to.

Figure 28. Simple application with login protected by Keycloak

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

37

Figure 29. Redirect to Keycloak for authentication

After entering the credentials and Keycloak verifies that the user exists and can use the application, we are redirected
back to the application (Figure 30).

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

38

Figure 30. User logged in successfully to test application, via Keycloak

3.2 Deployment through Reverse Proxy

In the example showcased in the previous subsection, the application uses Node.js25 libraries to properly integrate
with Keycloak. This is not always needed or feasible, for example when an application needs to authenticate itself. An
alternative scenario is to use a reverse proxy, e.g., Nginx26, to be integrated with Keycloak.

Having a reverse proxy as an intermediate for web applications that do not have OAuth 2.0/OpenID Connect support
can provide authentication and authorization capabilities for them and even simplify the whole architecture of a
system.

Overall, integrating Keycloak with Nginx as a reverse proxy provides a secure and scalable solution for managing
identity and access for web applications and services. Reverse proxy acts as a gatekeeper, protecting the application
from unauthorized access, while Keycloak provides centralized authentication and authorization services. Different
users may have different access rights to the applications and with the integration of Keycloak this can be controlled.

A role is a set of permissions that can be assigned to users or groups to control their access to the resource. A role can
be created in Keycloak by navigating to the "Roles" tab of the client configuration and clicking the "Add Role" button.

Figure 31 demonstrates this architecture, where a reverse proxy acts as a middleman between the application and the
web service that requires authentication/authorization.

25 https://nodejs.org/en/
26 https://nginx.org/en/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

39

Figure 31. Deployment of Keycloak with a reverse proxy (Nginx).

3.3 Deployment and Functional Testing

During the first cycle of the project, the development of the component had been completed and initial testing was
performed in a lab environment that TSI had setup in its premises. During cycle 2, AAA has been integrated both within
IntellIoT use cases and with external partners (Open Call 1 winners). As such, the AAA solution has been through
operational testing in multiple environments. This has led to several bug fixes as well as functionality improvements,
leading to well-matured and fully functional component, ready to be deployed in any real-world scenario. It should be
noted that this component has been selected by all Open Call 2 winners and it is currently integrated in all deployment
scenarios beyond the project’s use cases.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

40

4 TRUST-BASED INTRUSION DETECTION SYSTEM (IDS)
A Trust-based Intrusion Detection System (IDS) is designed, developed, and integrated into IntellIoT in the form of a
software component to be executed on each network node (e.g., drone, tractor, wearable device, robotic arm). More
specifically, each instance of the Trust IDS sniffs network traffic and analyses its characteristics to assign a trust value
for every network node it has communicated with. This system is used to characterise the trustworthiness of nodes in
the network according to certain criteria and assist isolating those that are considered as untrustworthy.

In more detail, when it is first executed, each instance assigns a neutral trust value to all other encountered nodes.
After collecting enough data inside a configurable window of time, it computes new trust values based on several
filters (trust criteria). Examples of such filters include packet rate and throughput. These filters have configurable
thresholds that when exceeded result in a decrease in trust for each associated network node. When thresholds are
not exceeded, the trust value of the corresponding node is increased. At the end of every time window, trust values
are updated and communicated to the rest of the security components. It is then upon the other security components
to take appropriate actions based on the IDS analysis.

The Trust-based IDS deployed in IntellIoT is a custom tool developed in the Go27 programming language and makes use
of only one external library, gopacket28, which provides packet processing capabilities. The tool runs on top of Linux
OS as a userland application that requires only access to the network interface. A containerised version of the tool is
also available.

Figure 32 demonstrates the basic architecture of the IDS system. The IDS tool supports two configurable filters aiming
to detect and prevent (by notifying other security components in the IntellIoT Security stack) rogue nodes that
overwhelm the network with unacceptable amounts of network traffic. This also applies to denial-of-service (DoS)
attacks that behave in a similar fashion; however, in this case, the excessive traffic is not caused by intermittent
events or malfunctions but it is instrumented by a malicious actor. The architecture of the tool allows for future
integration of additional filters, each of which may have its own independent parameters.

27 https://golang.org/
28 https://github.com/google/gopacket

https://github.com/google/gopacket

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

41

Figure 32. Architecture of the Trust-based IDS tool.

At each time interval, the IDS collects all data recorded for each node and computes a pass/fail value depending on the
configuration of the filters (one value for each node). A pass value indicates that the communication with a node is
within the acceptable limits set as the filter parameters. Respectively, a fail value indicates that the corresponding
node has operated outside of acceptable limits.

The vector of all those values is passed to the Trust Compute component of the tool. For every node on the network,
the Trust Compute component starts with a neutral trust value that as mentioned above is raised or decreased
according to the behaviour of the node. The computation of trust favours the early and fast detection of
malfunctioning / malicious nodes by assigning heavier weights to the fail values received by the filters than the pass
ones. Similar to [7], the failure values have a 4:1 larger impact than the pass values. This means that the Trust Value of
each network node will decrease four times faster than the rate it increases and therefore an erroneous behaviour will
be captured rapidly, and the node will need several time windows of proper functioning to reinstate its trust.

The Trust Component will consider a network node as untrustworthy once its computed trust value falls below a certain
threshold. In this case, it will trigger a warning message to external security modules (such as the MTD server and SAP)
indicating that priority action should be taken. Otherwise, the computed trust values are periodically transmitted to
the external security modules.

Two important remarks need to be made. First, the process of declaring a node as untrustworthy masks random events
that may be attributed to a momentarily out-of-expected behaviour - a single event cannot render a node as
untrustworthy. This is accomplished by using a configurable threshold below the neutral trust value to declare a node
as untrustworthy. Second, this threshold value is part of the user configuration of the tool, and it is set using a manual
process or some prespecified heuristic.

The Trust-based IDS instances are executed on each network node we need to analyse its network traffic. As
mentioned above, there exists a common secure channel, which is an Advanced Message Queueing Protocol (AMQP)

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

42

broker, that is used to send the trust values and warning messages to the other security components (the MTD module,
detailed in Sect. 5, and the SAP, detailed in Sect. 2). AMQP is an application layer messaging protocol that allows for
various routing topologies, such as point-to-point and publish-subscribe, with TLS support to provide secure
communication. This communication scheme is depicted in Figure 33. More details on the AMQP Trust Broker are
provided in Sect. 6.

The integration between the Trust IDS and the rest of the Trust Enablers is shown in Figure 33. More details on the
integration approach are also provided in Sect. 6.

Figure 33. Communication between IDS components and the MTD and SAP modules

During the first cycle, Trust-IDS employed user configurable thresholds to reward or penalize the network behavior of
communicating nodes. For the second cycle, we have added support for describing expected traffic from known nodes
and evaluating the captured traffic using cross-correlation. For example, sensor nodes can be described as devices
that are expected to generate sporadic network traffic, that is periods of inactivity followed by periods of small spikes
in packet transmissions due to sensor readings. Every time the captured traffic exhibits a strong correlation with the
expected traffic a reward is made. In the same manner, a weak correlation results in a penalty.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

43

5 MOVING TARGET DEFENCES (MTD)
Currently, network infrastructures have adopted mostly static configurations, and rely on traffic monitoring and
perimeter defence techniques (for example, Firewalls and Intrusion Detection Systems) to identify and mitigate
attacks. But given enough time and resources, these defences can be breached.

A new approach is Moving Target Defence (MTD), which is based on the notion that if the defending infrastructure has
a dynamic and constantly shifting configuration, attacking it and exploiting vulnerabilities becomes much harder. The
attacker now has to ‘chase’ a constantly moving target, uncover possible vulnerabilities and exploit them before they
are rendered invalid by an upcoming configuration change. To make the situation even worse for the attacker, the
configuration change is not random, but guided by traditional defences like an Intrusion Detection System, which
means that over time, the system becomes more secure against an incoming attack. While in traditional systems with
static configurations the difficulty of an attack goes down with time, with MTD it goes up.

MTD can be applied in several different ways, such as changing operating systems, address space, network
configuration etc. In IntellIoT, we focus on managing the network configuration and dynamically changing it to fit the
needs of the infrastructure. Examples of our strategies include the periodic shuffle of IP addresses and
communication ports, as well as the encryption of network traffic while changing in different time intervals (or as a
response to certain events) of the encryption keys and the encryption algorithms used to counter sniffing and Man-In-
The-Middle attacks.

The basic principles of our MTD architecture have been described in deliverable D2.6. In what follows, we re-elaborate
those main concepts for reasons of completeness and then proceed with details about the actual implementation of
the final MTD infrastructure.

The IntellIoT MTD system is a client-server set of software components that manages the configuration of the edge
network. The MTD server is responsible for managing all the clients, handling events like warnings from the IDS or
actions from the HIL service and generating new configurations. The MTD clients are responsible for applying the
configuration sent by the server, and based on that configuration, encrypt the traffic, and transmit it through secure
tunnels (PPTP [4] with IPSec [5]) to avoid packet sniffing and Man-In-The-Middle attacks. In that context, the MTD
server handles all complexity and performs all computations, while the MTD clients simply have to perform
configuration changes. As such, MTD client components are very lightweight processes that can be installed even in
the simplest of devices, making them appropriate for any kind of IoT deployment.

The server and clients communicate by exchanging the network configuration. Some parts of the network
configuration are the same for all clients, and while others are specific to each client. The configuration has the
following format:

type VPNConfig struct {

 //TUN

 CIDR string

 IsSet bool

 //UDP

 Port int

 Protoc string

 IsSet bool

 //Cipher

 CipherKey string

 CipherType cipher.CipherType

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

44

 //router

 ExtIP string

 IntIP string

 RoutesToAdd[]router.Route

 RoutesToRemove []string

}

The CIDR, ExtIP and LocIP are specific to each client, while everything else is common for all clients.

The way our MTD works is that in each client we provide a new network interface (mtd0) with its own IP address, named
internal IP (IntIP). That means that each client has a pair of IP addresses, the IP address with which it communicates to
the network, named external IP (ExtIP) and the internal IP. Such a pair is considered a route. When an application uses
the mtd0 interface, the packets that are generated have the internal IPs as source and destination, and when trying to
send the packet to another client, we first search the destination to find the corresponding external IP. If the route is
found, we then encrypt the packet and encapsulate it in a UDP packet with the external IPs as source and destination.

5.1 MTD Server

The MTD server proactively generates a new configuration at fixed time intervals to shift the attack surface. When a
warning is received from another security component (such as the Trust IDS or the SAP), it reactively generates a
mitigation configuration based on predefined strategies to mitigate the possible attack. It is also possible for the HIL
to send actions (e.g., isolate node X) through the Security Assurance Platform. Configuration changes focus on network
layer 3 and above, and do not interfere with the TSN controller and the resource reservations it maintains.

The MTD server is mainly comprised of four different modules (that we call handlers) and a client database; see Figure
34. Based on a static configuration provided at start up, the MTD server connects to the message broker (see Sect. 6).

The first main handler is the registration/deregistration handler. This handler manages registration requests from new
clients (nodes of the IoT infrastructure) and deregistration warnings from existing clients. More specifically:

• When a new client requests to register, it provides its current IP address and a client name. The client’s name
is automatically generated by the MTD client, it is later used to connect to the message broker and must follow
a specific format that will be presentedin the client section. Both the IP address and the client name are
checked and if they conflict with an existing client the registration is rejected. If there are no conflicts, a client
handler is created, and the client is added to the internal client database.

• When an existing client deregisters, the client handler is removed from the database and stopped. After any
changes to the database, a new configuration is generated and sent to all remaining clients. The new
configuration has an IP pair assigned to the new client in the case of a registration and includes a new routing
table that either includes the newly registered client or excludes the deregistered one. All other parts of the
configuration remain the same.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

45

Figure 34. MTD server Architecture

The second main handler is the warnings handler. Every message that comes from an external source (e.g., HIL, SAP,
IDS etc) is handled as a warning. Warnings have the following format:

type warning struct {

 Type string

 Action string

 Body string

 Time *timestamppb.Timestamp

}

The available types are “info”, “warning” and “error”. The available actions are “drop” to drop an active client and
“allow” to restore connectivity to a dropped client. Also, the Body variable contains information relevant to the type
and action of the warning. Finally, a timestamp is included for logging purposes.

Currently, the only supported type-action pairs are error-block to block a client and error-allow to restore one. When
we receive an error-block message, we read the body for identification about the client to be blocked and search the

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

46

database. If we find the client, we set it as dropped and regenerate a configuration with that client removed from the
routing table. Similarly, when we receive an error-allow message, we search for the client, unset the dropped flag and
regenerate a configuration with that client added to the routing table.

Future work is to add strategies for known attacks and based on the warnings we receive, generate configurations
that do not necessarily drop a client, but mitigate attacks in other ways as well.

The third main handler is the timer handler. This handler generates a new configuration at fixed intervals to shift the
attack surface. Currently, when the internal timer sends a tick, one of three possible changes is performed:

● Update the UDP (external) connection configuration

● Update the TUN (internal) connection configuration

● Update the encryption

When updating the UDP connection, we change the external IP address of each node, and the port that all nodes use
to exchange encrypted traffic. The outcome of this change is that all clients are shifted, and an external attacker that
might have found a vulnerability in a specific client would have to start searching for that client again, and a Man-In-
The-Middle attack would have to scan the network again to find the new port.

When updating the TUN connection, we change the internal IP address of each node. The rationale is that by changing
the routing table we make it harder for attackers to gather information about the topology of the system, even if they
gain access to one of the clients.

MTD supports switching between unencrypted and encrypted traffic. The system supports unencrypted traffic,
unencrypted traffic with snappy compression and AES CBC encryption [8][9]. For the latter, different key sizes (128,
192 and 256 bits) are supported, and the system may perform changes to both key value and key size. A random key
generator is employed. At the current stage of development, we are also working on supporting switching between
different modes of the AES encryption standard, namely AES CBC encryption with snappy compression, AES CBC
encryption with HMAC for validation and AES CBC encryption with HMAC for validation and snappy compression.

It should be mentioned that AES encryption does come with a performance penalty for clients that are based on very
simple compute devices and that is the reason why we have also chosen to support unencrypted traffic when there is
no indication of threats. As a middle ground solution, in the future we plan to investigate encryption schemes
specifically tailored for resource constrained devices.

The final type of handler is the client handler, one of which is spawned for each registered client. The client handler
has the state of each client as assigned by the server, as well as a keep-alive connection. At fixed intervals, each client
handler sends a keep-alive request to the client, and the client has to respond within a specific time interval, or it is
considered disconnected and removed from the client database.

Finally, a connection to the TSN controller has been added, in order to send isolation requests or see the topology
graph from the MTD server. The API has been implemented and it remains to be tested during IntellIoT framework
integration activities.

5.2 MTD Client

The MTD clients (see Figure 35) are responsible for managing the network configuration, maintaining an encrypted
connection between each other using the routing table sent by the MTD server and applying any changes the server
sends.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

47

Figure 35. MTD client Architecture

The MTD client contains a config handler, and a VPN module. The VPN module is comprised of:

● A TUN connection and a virtual ethernet interface

● A Router with an internal routing table

● A cipher

● Several Encryptor and Decryptor workers

● A UDP connection using the active network connection of the device

The config handler is responsible for receiving the configuration from the server and sending it to the VPN module.
The VPN module then breaks the config into parts and sends each part to the corresponding submodule.

The TUN connection receives unencrypted packets from the application layer to encrypt and send to other clients, and
packets from other clients after they have been decrypted to send to the application layer. At initialization a virtual
network interface is created (mtd0) and after registering with the server, an internal IP address is assigned to it. A
writer and a reader are opened on the interface that are responsible for transferring packets to and from it.

The Router is responsible for keeping the routing table up to date based on the configuration sent by the server and
searching the routing table to resolve routes when requested by the encryptors.

The cipher is responsible for keeping the active algorithm and key in sync with the server. At any point there are two
states of the cipher, the current and the previous state. The current state is used when encrypting packets and the
default state when decrypting packets. If the decryption with the current state fails, we fall back to the previous state.
That is expected behaviour when an update to the cipher occurs, since in-flight packets encrypted with the previous

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

48

key and/or algorithm might reach the client after the update. The previous state is kept active for a limited period of
time after each update.

The encryptor workers receive unencrypted packets from the TUN connection, request a route from the routing table
and if a route is found, use the cipher to encrypt the packet and send it along with the route to the UDP connection.
Multiple encryptor workers can be spawned based on the static configuration of the client, the needs and the available
resources of the device, to leverage parallelism to reduce the latency incurred by the encryption.

The decryptor workers receive encrypted packets from the UDP connection and use the cipher to decrypt them and
send them to the TUN connection. Similarly, to the encryptor workers, multiple decryptor workers can be spawned.

The UDP connection is the opposite of the TUN connection. It receives encrypted packets from other clients to decrypt
and send to the application layer and sends packets from the application layer to other clients after they have been
encrypted. After registering with the server, every time an encrypted packet is sent from an encryptor along with the
route, that packet is encapsulated in a UDP packet and sent to the destination using the port specified by the server.
Similarly, every time a packet is received from the port specified by the server, that packet is sent to the decryptors.
The UDP connection keeps two readers active, one for the current configuration and one for the previous. The reason
is the same as for the cipher, to be able to receive packets that were in flight when the update occurred.

At start up, each client must register with the server by sending a registration request containing the client's name and
IP address through the broker. The registration process goes through the following steps:

1. Authentication: The server first verifies the identity of the client by checking their credentials. This involves
checking the client database to ensure that the client is authorized to register within the network. If the
client's credentials are valid, the server will proceed to the next step.

2. Acknowledgment: Once the client's identity is confirmed, the server sends an acknowledgement (ack)
message back to the client, letting them know that their registration request was received and accepted.

3. Registration: The server then adds the client's information to its client database, which registers the client as
an authorized member of the network. This allows the client to access the resources and services provided by
the network.

4. Configuration update: Finally, the server triggers a configuration update to ensure that all other nodes in the
network are aware of the newly registered client. This update may include distributing updated routing tables,
updating External and Internal IPs table.

The client's name is a combination of the username of the user that owns this device and the device’s client ID in the
format <username>_<clientID> (e.g. ,TSI_sensor1, TSI_sensor2, SANL_tractor etc).

Finally, each client opens a keep-alive connection to the server and waits for keep-alive requests from the server.
When a request is received, the client responds with a status OK message. If the server does not send a request after
a fixed amount of time, the connection to the server is considered to be lost. After that the client will be deregistered
following the same process as the register.

More details on the integration of MTDs with the rest of the trust components through the dedicated broker is provided
in Sect. 6.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

49

6 TRUST MESSAGE BROKER & TRUST COMPONENTS’ INTEGRATION
A key characteristic that maximises the efficacy of IntellIoT's Trust Enablers is their tight integration and continuous
communication through the dedicated Trust Broker, based on RabbitMQ29 and using the AMPQ30 binary protocol. More
details on the different components and their role in this integration, along with their key interactions with other
components are provided below.

6.1 Trust Enablers’ Integration Overview

The Trust IDS (see Sect. 4) continuously records events such as network traffic and analyses it for anomalies. They are
responsible for aggregating pertinent evidence from multiple sources related to the operation of individual
components, IDS computes a local trust value for each other node that it communicates with. When the trust value for
a node drops below a threshold, it generates a warning. These warnings are left to be processed by the rest of the
system in order to determine if an action is needed to be taken against offending nodes.

Similar to the IDS, the Event Captors (ECs; see Sect. 7.1) are software modules responsible for aggregating pertinent
evidence from multiple sources related to the operation of individual components, as well as the overarching
processes where these components are involved in, thus enabling the real-time, continuous assessment of the
security posture of the IntellIoT system. ECs can be deployed across all layers of the IntellIoT architecture, from the
robot arm (e.g., to monitor telemetry that may indicate abnormal activities) to device operating systems (e.g., to
monitor running processes) and backend storage databases (e.g., to parse access logs or calculate uptime),
transmitting their monitoring evidence to the Security Assurance Platform (SAP).

The SAP (see Sect. 2) is central to the trustworthiness components and has its own queue in the message broker
pipeline. SAP digest messages respectively from the IDS queue and EC queue while in the same time through
appropriate REST APIs it can communicate with the Distributed Ledger Trustworthiness (DLT) manager.

Finally, the MTDs (see Sect. 5) are responsible for mitigation actions once the SAP receives an Intrusion Warning from
the IDS. MTDs are divided into two distinct components (the server MTD, and the client MTD) with the first having its
own queue (MTD server queue) while MTD clients consumes messages from the latter queue.

29 https://www.rabbitmq.com/
30 https://www.rabbitmq.com/

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

50

Figure 36. Overview of Trust Enablers’ integration via the shared Trust Broker

Each of the above-mentioned components are considered as producers and/or publishers to the Trust Broker,
declaring its own exchange queue (Figure 36). There are in total 4 queues bounded to the topic exchange with 4 routing
key patterns (#ids, #mtd, #sap, #ec, for Trust IDS, MTD, SAP and EC -related messages, respectively), while in the
topic exchange the Queues are linked using the routing key patterns instead of a simple routing key.

The flow of a messages in Topic Exchange follows the typical publish/subscribe scheme. More specifically:

• A message Queue binds to an Exchange with a routing key pattern (P).
• A publisher sends a message with a routing key (K) to the Topic Exchange.
• The message is passed to the Queue if P matches with K. The routing key matching is decided as discussed

below.
• The consumer subscribing to the Queue receives the message.

In terms of Topic Exchange requirements, the specific routing patterns are followed:

• A routing key in Topic Exchange must consist of Zero or more words delimited by dots
• A routing pattern is similar to a regular expression with only *, . and # allowed. The symbol star (*) means

exactly one word allowed. Similarly, the symbol hash (#) means zero or more number of words allowed. The
symbol dot (.) means – word delimiter.

• Multiple key terms are separated by the dot delimiter.
• If a routing pattern is ids.*, it means any message sent with the routing key “ids” as the first word will reach the

queue. For example, ids.event will reach this Queue, but event.ids will not work.

6.2 IDS integration details

IDS exposes two topics, in JSON format, to the broker for the rest of the security components to consume and take
appropriate actions. The first one is the trust topic ‘ids.trust.[node id]’, where each IDS instance publishes
its trust values for the nodes it has communicated with. An example payload is:

{

 “10.0.0.1”: 0.0,

 “10.0.0.2”: 1.0,

 ...

}

The second topic is the ‘ids.warn.[node id]’, where each IDS instance publishes a list of nodes that are
considered untrustworthy. An example payload is:

{

 “nodes”: [

 “10.0.0.1”

]

}

6.3 MTD integration details

Apart from waiting input from the IDS topics described above, the following topics are used:

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

51

• mtd.registration

• mtd.config.<client name>

• mtd.keepaliveReq.<client name>

• mtd.keepaliveResp.<client name>

Details on each of the four topics are provided in the subsections that follow.

6.3.1 MTD REGISTRATION TOPIC

MTD clients have write access to this topic and the server has read access. This is the topic where clients publish
registration/deregistration requests.

The format is as follows:

type registrationCfg struct {

 Action string

 NodeName string

 NodeIP string

}

An example payload is provided below:

{

 "Action": "register",

 "NodeName": "TSI_sensor1",

 "NodeIp": "192.168.1.10"

}

{

 "Action": "deregister",

 "NodeName": "TSI_sensor1",

 "NodeIp": ""

}

6.3.2 MTD CONFIG TOPIC

A new subtopic is created for each registered client and each client has read access only to its own subtopic. The
server has write access to all subtopics and sends personalised configurations to each client, possibly skipping clients
that are deemed compromised.

The format is as follows:

type VPNConfig struct {

 //TUN

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

52

 CIDR string

 //UDP

 Port int

 Protoc string

 //Cipher

 CipherKey string

 CipherType cipher.CipherType

 //router

 ExtIP string

 LocIP string

 RoutesToAddmap[string]string

 RoutesToRemove []string

}

An example payload is provided below:

{

 "CIDR": "10.0.0.2/24",

 “IsSet": “true",

 "Port": 30000,

 "Protoc": "udp4",

 “IsSet": ”true", "CipherKey": "3863766a4c4f553166502d716a324b69",

 "CipherType": 3,

 "ExtIP": "192.168.176.5",

 "LocIP": "10.0.0.2",

 "RoutesToAdd": {

“client_device1” "10.0.0.1" "192.168.176.4",

“client_device2” "10.0.0.2" "192.168.176.5",

 },

 "RoutesToRemove": [

"10.0.0.3"

]

}

6.3.3 MTD KEEP-ALIVE REQUEST AND KEEP-ALIVE RESPONSE TOPICS

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

53

Similarl to the configuration topic, a new subtopic is created for each registered client and each client has read access
only to its own request subtopic and write access to its own response subtopic. The server has write access to all
request subtopics and read access to all response subtopics. The server sends requests to which the clients must
answer within a specific amount of time before being treated as disconnected. The payload is a randomly generated
string that the client has to send back along with its status using its own response topic.

6.3.4 MTD AND SAP

The MTD client and server applications communicate over a secure channel provided by the Trust Message Broker.
More specifically, the MTD Server consumes messages generated from IDS and takes mitigation actions when this is
needed. When such an action is taken, the server needs to notify the Security Assurance Platform, as it is the
component providing a holistic view of the current security and privacy posture of the system to the operators. This
happens through the ‘mtd.alert’ topic.

The reverse case is also needed. The Security Assurance Platform, through the event captors, can also identify attacks
and trigger a mitigation action using the ‘mtd.trigger’ topic.

Both of these follow the same payload logic as the ‘ids.warn’ topic:

{

 “nodes”: [

 “10.0.0.1”

]

}

6.4 Integration & interplay of Security Assurance Platform with the DLTs

Distributed ledger technologies (DLTs) are positioned as a key enabler for trusted and reliable distributed monitoring
systems since these support immutable and transparent information sharing among involved untrusted parties. In
DLTs, the authentication process relies on consensus among multiple DLT managers in the network. While the terms
DLT and Blockchain will be used interchangeably, Blockchains are a type of DLT, where chains of blocks are made up
of digital pieces of information called transactions and every node maintains a copy of the ledger. Therefore, in a DLT-
enabled network, transactions contain, for example, monitoring control messages, and these are recorded and
synchronized in a distributed manner in all the participants of the system. These participants are called miners or
peers, and, in some specific DLTs, users are charged a transaction fee to perform (crypto) transactions. In addition,
DLTs allow the storage of all transactions into immutable records and every record distributed across many
participants. Thus, security in DLTs comes from the distributed characteristic, but also the use of strong public-key
cryptography and strong cryptographic hashes.

The benefits of the integration of DLTs into IoT monitoring systems include:

i) guarantee of immutability and transparency for report data;
ii) removal of the need for third parties;
iii) development of a transparent system for heterogeneous secured monitoring networks to prevent

tampering and injection of fake data from the stakeholders

While DLTs are a key trust enabler in the project, the bulk of the efforts on the development of the resource-aware DLT
components developed within IntellIoT take place within Task 3.4 (“Decentralized trust via secure interaction &
contracts”), and for Cycle 1 are documented in the corresponding deliverable, i.e., D3.4 – “Decentralized trust via secure
interaction and contracts (first version)”. For the sake of brevity, these details will not be repeated here.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

54

Nevertheless, details on the integration of the DLT with the SAP will be provided below. This integration facilitates the
trust-by-design approach of IntellIoT, as it allows the recording of security and privacy -pertinent evidence from the
SAP in the Ledger, in a tamper-proof manner. This provides an additional layer of trust for said evidence aggregated
at the SAP, which may include:

1) Evidence generated internally at the SAP (e.g., vulnerability or dynamic testing assessment results);
2) Evidence the SAP collects from monitoring and interacting with other Trust Enablers (e.g., Trust IDS alerts, or

triggered MTD strategies)
3) Monitoring Evidence from monitoring the Event Captors deployed across the various layers of IntellIoT and

the protected deployment.

Through interaction between the SAP and the DLT Manager, the above types of Evidence are recorded in the Ledger
in an automated manner, and the entries (more specifically, transaction and block IDs) are returned to the SAP, to be
provided to the SAP operator for verification (e.g., in the case of any audit).

More details on how each of the above three cases are relayed from the SAP to the DLT Manager are provided in the
following subsections.

6.4.1 SAP TO DLT RECORD OF INTERNALLY GENERATED EVIDENCE

Messages of this type (e.g., assessment results) can be sent to the DLT for recording using a JSON format having the
following structure:

"@timestamp": <timestamp>,

"event": {

"kind": <kind of event>,

"category": <category of event>,

"type": <type of event>,

"number_of_vulnerabilities": <the number of vulnerabilities>,

"critical_vulnerabilities": <the number of critical vulnerabilities>,

"high_vulnerabilities": <the number of high vulnerabilities>,

"medium_vulnerabilities": <the number of medium vulnerabilities>,

"low_vulnerabilities": <the number of low vulnerabilities>,

},

"src_ip": <dynamic tester ip>,

"src_port": <dynamic tester port>,

"assets":[#< assets that were tested>

 "asset_1":{

 "asset_ip":<asset ip>,

 "asset_name":<asset name>,

 "asset_port":<asset port>,

 "port_protocol":<asset protocol>},

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

55

 ...

 "asset_N":{

 "asset_ip":<asset ip>,

 "asset_name":<asset name>,

 "asset_port":<asset port>,

 "port_protocol":<asset protocol>},

]

}

}

An example based on the above template is provided below:

{

"@timestamp": 2017-04-07T22:24:37.251547+0100,

"event": {

"kind": “alert",

"category": “dynamic_testing”,

"type": “dynamic_testing_report”,

"number_of_vulnerabilities": "{{X}}"

"critical_vulnerabilities": "{{Y}}"

"high_vulnerabilities": "{{Z}}"

"medium_vulnerabilities": "{{W}}"

"low_vulnerabilities": "{{V}}"

},

"src_ip": "192.168.122.149",

"src_port": 49324,

"assets":[

 "asset_1":{

 "asset_ip":"192.168.1.1"

 "asset_name":"test_asset"

 "asset_port":"443",

 "port_protocol":tcp},

 "asset_2":{

 "asset_ip":"192.168.1.2"

 "asset_name":"test_asset2"

 "asset_port":"443",

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

56

 "port_protocol":tcp},

]

}

Furthermore, a screenshot of such a message exchange between the SAP and the DLT Manager, from the early
integration testing taking place between the two components, is shown in Figure 37.

Figure 37. Recording of SAP Assessment Results in the Ledger, via interaction with DLT Manager (request & response).

6.4.2 SAP TO DLT RECORD OF TRUST ENABLER EVIDENCE

Messages of this type (e.g., alerts from the Trust IDS) can be sent to the DLT for recording using a JSON format having
the following structure:

{

"@timestamp": <timestamp>,

"event": {

"kind": <kind of event>,

"category": <category of event>,

"type": <type of event>,

},

"src_ip": <source ip>,

"src_port": <source destination>,

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

57

"dest_ip": <destination ip>,

"dest_port": <destination port>,

"proto": <protocol>,

"app_proto": <protocol specs>,

}

An example based on the above template is provided below:

{

"@timestamp": 2017-04-07T22:24:37.251547+0100,

"event": {

"kind": “alert",

"category": “intrusion_detection”,

"type": “anomaly”,

},

"src_ip": "192.168.122.149",

"src_port": 49324,

"dest_ip": "69.195.71.174",

"dest_port": 443,

"proto": "TCP",

"app_proto": "tls",

}

A screenshot of such a message exchange between the SAP and the DLT Manager, whereby Trust IDS events
aggregated by the former are related to the latter, is shown in Figure 38.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

58

Figure 38. Recording of Trust IDS events in the Ledger, via interaction between SAP and DLT Manager (request &
response)

6.4.3 SAP TO DLT RECORD OF MONITORING EVIDENCE

Messages of this type (e.g., Monitoring Rule triggers via Event Captor inputs) can be sent to the DLT for recording using
a JSON format having the following structure:

{

"@timestamp": <timestamp>,

"event": {

"Profile": <the Assessment Profile name>,

"Asset Name": <The name of the Asset>,

"Source": <the source of the event, e.g. Filebeat, Auditbeat, Native>,

},

"Outcome": <The monitor result, Satisfaction/Violation>

}

An example based on the above template is provided below:

{

"@timestamp": 2017-04-07T22:24:37.251547+0100,

"event": {

"Profile": Availability,

"Asset Name": testasset,

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

59

"Source": Native,

},

"Outcome": Satisfaction

}

A screenshot from such a message exchange, whereby a Monitoring Rule trigger is recorded from the SAP in the
Ledger, is shown in Figure 39.

Figure 39. Recording of Monitoring Rule trigger evidence in the Ledger, via interaction between SAP and DLT Manager
(request & response).

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

60

7 ADDITIONAL SECURITY, PRIVACY, AND TRUST PRIMITIVES
In addition to the various trust enablers defined above, IntellIoT also integrates a number of additional design choices
and enablers that facilitate its trust-by-design approach. These are detailed in the subsections that follow.

7.1 Multi-layer Monitoring

Multi-layer monitoring is an important part of the trust-by-design in IntellIoT, as it provides the means to collect the
necessary evidence needed to monitor and ensure that the related mechanisms work properly and safeguard the
system and the users. This monitoring encompasses:

• the security posture of the IoT environment where IntellIoT is deployed, including the application assets and
the IntellIoT components;

• the operation of all the other security, privacy, and trust primitives, as defined herein.

Evidence from the above sources leveraged in real-time to provide an up-to-date view of the security and privacy
posture of the protected infrastructure and the IntellIoT framework, via the SAP component (see Sect. 2). More details
in terms of the implementation are provided in the subsections that follow.

7.1.1 EVENT CAPTORS

The event captors are responsible for aggregating required evidence from multiple sources related to the operation
of individual components, as well as the overarching processes where these components are involved in, enabling the
real time, continuous assessment of the security posture of the IntellIoT system. Data and events are mostly collected
through ElasticSearch based on lightweight shippers (referred to as “Beats”, such as FileBeat31, MetricBeat32, and
PacketBeat33), that forward and centralize log data. Data can also be collected through Logstash, an open server-side
data processing pipeline that ingests data from a multitude of sources, transforms it, and then sends it to
ElasticSearch.

The Elastic Common Schema (ECS) will be used as an open-source specification for defining a common set of
fields among with the data model that will be used when storing event data in Elasticsearch. Furthermore, ECS will be
used to specify the field names and datatypes to be stored while supporting uniform data modelling, enabling to
analyse data from diverse sources.

7.1.2 EVENTS COMMON SCHEMA SPECIFICATION

At a high level, ECS provides fields to classify events and data in two different ways: “Where is the data is coming
from?” and “What data is it?”. ECS defines four categorization fields for this purpose34:

• Event.kind: Highest level in the ECS category hierarchy, providing high-level information about what type
of information the event contains, without being specific to the contents of the event. Possible values include:

o alert

o event

o metric

o state

o pipeline_error - signal

31 https://www.elastic.co/beats/filebeat
32 https://www.elastic.co/beats/metricbeat
33 https://www.elastic.co/beats/packetbeat
34 https://www.elastic.co/guide/en/ecs/current/ecs-event.html

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

61

• Event.category: Second level in the ECS category hierarchy, representing "big buckets" of ECS
categories. Possible values include:

o authentication

o configuration

o database

o driver

o file

o host

o iam

o intrusion_detection

o malware

o network

o package

o process

o registry

o session

o web

• Event.type: Third level in the ECS category hierarchy, representing a "sub-bucket" categorisation. When
used along with “Event.category”, it enables filtering events to a level appropriate for single
visualization. Possible values include:

o access

o admin

o allowed

o change

o connection

o creation

o deletion

o denied

o end

o error

o group

o info

o installation

o protocol

o start

o user

• Event.outcome: Fourth level in the ECS category hierarchy. Denotes whether the event represents a
success or a failure from the perspective of the entity that produced the event. Possible values include:

o failure

o success

o unknown

Finally, the payload specification is as follows:

{

 "@timestamp": "<the time stamp>",

 "event": {

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

62

 "kind": "<>",

 "category": "<>",

 "type": "<>",

 "outcome": "<>",

 },

 "<payload>" : "all possible recorded from Elasticsearch (ECS fields) except

“event” gategories"

}

7.2 5G Security Considerations

In the following section, the 5G security architecture will be briefly described. A longer description is provided in the
3GPP TS 33.501 document.

Figure 40. Generic 5G Security Architecture (source: 3GPP)

The generic 5G security architecture is depicted in Figure 40, which describes several 5G security domains:

• Network access security (I): the set of security features that enable a UE to authenticate and access services
via the network securely, including the 3GPP access and non-3GPP access, and in particularly, to protect
against attacks on the (radio) interfaces. In addition, it includes the security context delivery from the Serving
Network (SN) to the Access Network (AN) for the access security.

• Network domain security (II): the set of security features that enable network nodes to securely exchange
signalling data and user plane data.

• User domain security (III): the set of security features that secure the user access to mobile equipment.
• Application domain security (IV): the set of security features that enable applications in the user domain and

in the provider domain to exchange messages securely. Application domain security is out of scope of the
present document.

• Service-based Architecture (SBA) domain security (V): the set of security features that enables network
functions of the SBA architecture to securely communicate within the serving network (SN) domain and with
other network domains. Such features include network function registration, discovery, and authorization
security aspects, as well as the protection for the service-based interfaces. SBA domain security is a new
security feature compared to the 4G security architecture as described in 3GPP TS 33.401.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

63

• Visibility and configurability of security (VI): the set of features that enable the user to be informed whether
a security feature is in operation or not.

7.2.1 OVERVIEW OF COMMON 4G/5G SECURITY

The generic 3GPP security functions may be split in two categories:

• Access-layer security – this aims at securing the wireless link between the mobile terminal and the base
station (4G eNB or 5G gNB) again security attacks. This is primarily done through mutual authentication
between the UE and the gNB (gNB authenticating to the UE as well as the UE authenticating to the gNB) using
cryptographic mechanisms stored in the USIM. Although the mechanisms have been generalized to support
additional IETF-based security mechanisms, the Access-layer security between 4G or 5G network did not
evolve significantly.

• Network-domain security – this aims at securing the various back-end entities in a 4G or 5G network. As
depicted on Figure 41, these security mechanisms have been primarily designed in the case of roaming or
virtual networks, as it remains largely assumed that network-domain entities operate in a monolithic and
secured environment (i.e., owned by the same operator at the operator's premise). Accordingly, a 4G eNB or a
5G gNB should mutually authenticate with the visited PLMN (Public Land Mobile Network). Similarly, the visited
PLMN must mutually authenticate to the Home HSS (the home database containing the access rights of the
user).

Figure 41. Network-domain security mechanisms (Source: Ericsson)

7.2.2 NEW 5G-SPECIFIC INNOVATIONS

If the 5G security architecture inherits many functions from previous generations (LTE or UMTS), it has a few major
new security functions primarily adapted to handle three key 5G innovations: 5G end-to-end security, service-based
architecture (i.e., slicing) and security on the user plane.

7.2.2.1 NEW AUTHENTICATION FRAMEWORK

The main authentication framework is known as the primary authentication and consists of the exchange of session
keys between the UE and the eNB/gNB during the device registration phase. One limitation is that the security

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

64

mechanisms are specific to 3GPP and cannot be extended beyond cellular operators, e.g., on a data network or a public
internet. The new authentication framework enhances the primary authentication by supporting additional security
and authentication algorithms as defined by the IETF under the name Extensible Authentication Protocols (EAP). EAP
enables to use additional security credentials than those stored on the USIM card and would enable end-to-end
security beyond the scope of cellular operators.

7.2.2.2 ENHANCED SUBSCRIBER PRIVACY

One major flaw in subscriber privacy in cellular networks is known as ‘fake base stations’, which can be applied through
mechanisms known as IMSI catchers. Since 3G, a dual authentication has been enforced where the base station has to
authenticate to the user in the same way as the user needs to authenticate to the base station. Yet, side information,
such as device capabilities or correlation between protocol messages could still reveal much of the identity of a
subscriber. 5G aims at mitigating such risk by proactively limiting the number of messages sent in cleartext even at an
early stage of protocol negotiation.

7.2.2.3 SERVICE BASED ARCHITECTURE AND INTERCONNECT SECURITY

Service-based architectures (SBA) is a major paradigm shift introduced in 5G networks. It relates to extend of
traditional point-to-point interfaces between network functions to new service-based interfaces, where the overall
network architecture is designed as a dynamic, on-demand exposed service set to network entities (e.g., a MEC service
might or might not be exposed to a core network or a user-plane function (UPF). SBA additionally increases the level
of security protocols from a purely L3 level (IPSec) to L4 TLS mechanisms to protect the integrity at transport level or
even OAuth 2.0 protocols to secure the integrity at the application level.

7.2.2.4 INTEGRITY PROTECTION OF THE USER PLANE

If various mechanisms have been designed in 3G and 4G to protect the control plane, the user plane has always been a
weak link of a cellular network. For example, if a mutual authentication has been introduced as early as 3G in order to
guarantee that both a UE and a eNB/gNB are legitimate and allowed to use a particular service, data transmitted on 3G
and 4G networks were still cleartext, unless covered by an additional end-2-end security level between a provider and
consumer beyond the cellular infrastructure. 5G improves this by enforcing the availability of encryption and integrity
protection mechanisms on the user plane between a UE and a gNB. By ‘availability’, it means that 5G operators must
have such functions available if the devices require them, but they do not need to use it by default. Cryptographic
mechanisms are indeed resource demanding and not all classes of mobile entities (ME) can support them.

7.3 Other best practices, processes, and technologies

In addition to all the above provisions towards a trustworthy-by-design framework, IntellIoT also adopts best practices
and industry-established standards in all types of interactions that involve the processing, storage and transmission
of data. Some key examples are provided below, while additional details will be provided in the deliverables
documenting the setup of the demonstrator environments (i.e., D5.2 and D5.5), as some of these aspects are merely
configuration provisions and not the development of novel technologies or specific building blocks.

Concerning web and other user interactions foreseen in IntellIoT (e.g., to define end user goals, or to access the SAP
web front end) applications will use the Transport Layer Security (TLS) protocol (at v1.3 since August 2018 [6]). A
successor to the Secure Sockets Layer (SSL) protocol, TLS uses a combination of symmetric and public-key
encryption to achieve its goal. Both parties create a secure communication channel at the beginning using public-key
cryptography. During this period, they can exchange all the parameters for their communication as well as agree on a
symmetric key for the rest of the communication which is a less resource intensive type of communication.

Another important consideration in this regard is the protection of the Trust Broker that all Trust Enablers use to
integrate and interact with each other (see Sect. 6). As mentioned above, this is based on the AMQP protocol. This
protocol guarantees the immutability of the messages exchanged using hashes. On top of that the AMQPS variant is
going to be used, which is AMQP over TLS so no third party can have access to the information exchanged between the
secure components.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

65

Furthermore, for data at rest, meaning any data store (e.g., files or databases, such as the patient databased in Use
Case 2) that exists in a node and needs to be accessed only by specific users/applications, appropriate encryption
mechanisms will be used, appropriate to the sensitivity and criticality of the data to be protected. The encryption
mechanisms will be combined with the authentication and authorization provided by the AAA component (see Sect. 3).

Finally, during the setup of the testing environment and, secure-by-default and fail-secure device configuration will
be adopted for all key components (e.g., from network controllers and switches to sensor nodes and edge devices –
tractor, robotic arm, etc.), to ensure that devices are secure out of the box (integrating all security-related
bootstrapping procedures as needed) and, in the case of any failure, either by a fault or a malicious action, they will
revert to a safe state.

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

66

8 CONCLUSIONS
This deliverable is the final output of Task 4.4 (“Trustworthy infrastructure by design”) and, as such, documented the
design and development of the final version of the security, privacy and trust enablers comprising the “Trust pillar” of
IntellIoT, as defined within the corresponding final version of the framework’s Architecture (as documented in D2.6).

As with all IntellIoT building block implementation tasks in WP3 and WP4, the components’ specifications and
associated interactions and requirements defined within D2.3 (& later D2.6), drove the design and development of the
trust enablers presented herein. These covered all three pillars comprising the trust-by-design approach of IntellIoT,
including continuous assurance, security, privacy and trust primitives, as well as the multi-layer monitoring of relevant
operational parameters.

In terms of next steps, the building blocks defined herein will be provided as input to Task 5.1, towards the delivery of
the final (Cycle 2) integrated version of IntellIoT, to be documented in D5.4 – “Integrated IntellIoT framework & use case
implementations (final version)”. These will be followed by the associated demonstration activities in Task 5.2
(“Deployment, testing & demonstration”) – to be documented in D5.5 – “Deployed & tested use case demonstrators (final
version)” - and evaluation activities in Task 5.3 ("Validation & evaluation”) – to be documented in D5.6 – “Validation &
evaluation (final version)” - which will also encompass the use & assessment of the Trust enablers detailed herein, in
the context of IntellIoT’s integrated framework & the corresponding Trust-focused scenarios defined within each of
the 3 use cases. It should also be noted that many of the Trust enablers will be used by the OC2 winners of IntellIoT,
thus providing further demonstration & validation evidence, in the context of additional use cases.

Furthermore, some of the enablers will be shared with the community for further uptake & exploitation. More
specifically, the MTD, trust IDS and AAA components will be released as open source components and will be made
available to the community through the official IntellIoT repository (https://gitlab.eurecom.fr/intelliot). The AAA is
based on KeyCloak which is an open source solution, released under the Apache 2.0 license. Therefore, our extensions
and customizations will be made publicly available with the same license to ensure that they can be easily adopted by
any entity seeking to use the specific solution. At this point in time, the MTD and trustIDS components have only been
released to select third parties (including all the Open Call 2 winners which have chosen to use them as part of their
solutions). A public release of the two components is planned for the near future and it will include both source code
and documentation as well as deployment packages (e.g. binaries and docker containers) to enable a smooth adoption
path by any interested entity which may be willing to customise them, extend them or simply use them as part of a
deployed security solution. To facilitate their adoption, TSI plans to release these tools under a permissive open source
license (the exact license will be determined prior to public release).

https://gitlab.eurecom.fr/intelliot

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

67

REFERENCES
[1] Shanahan, M. (1999). The event calculus explained. In Artificial intelligence today (pp. 409-430). Springer, Berlin,

Heidelberg.

[2] Internet Engineering Task Force (IETF), D. Hardt, RFC 6749, The OAuth 2.0 Authorization Framework,
https://datatracker.ietf.org/doc/html/rfc6749

[3] Internet Engineering Task Force (IETF), M. Jones, J. Bradley, N. Sakimura, RFC 7519, JSON Web Token (JWT),
https://datatracker.ietf.org/doc/html/rfc7519

[4] Internet Engineering Task Force (IETF), K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, G. Zorn, RFC 2637,
Point-to-Point Tunneling Protocol (PPTP), https://datatracker.ietf.org/doc/html/rfc2637

[5] Internet Engineering Task Force (IETF), S. Frankel, S. Krishnan, RFC 6071, IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap, https://datatracker.ietf.org/doc/html/rfc6071

[6] Internet Engineering Task Force (IETF), E. Rescorla, RFC 8446, The Transport Layer Security (TLS) Protocol
Version 1.3, https://datatracker.ietf.org/doc/html/rfc8446

[7] G. Hatzivasilis, I. Papaefstathiou and C. Manifavas, "SCOTRES: Secure Routing for IoT and CPS," in IEEE Internet of
Things Journal, vol. 4, no. 6, pp. 2129-2141, Dec. 2017, doi: 10.1109/JIOT.2017.2752801.

[8] Internet Engineering Task Force (IETF), J. Schaad, RFC 3565, Use of the Advanced Encryption Standard (AES)
Encryption Algorithm in Cryptographic Message Syntax (CMS), https://datatracker.ietf.org/doc/html/rfc3565

[9] NIST, FIPS PUB 197, "Advanced Encryption Standard (AES)," Nov. 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197

[10] OASIS Open, CACAO Security Playbooks Version 1.1, https://docs.oasis-open.org/cacao/security-
playbooks/v1.1/security-playbooks-v1.1.html

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc2637
https://datatracker.ietf.org/doc/html/rfc6071
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc3565
http://csrc.nist.gov/publications/fips/fips197/fips-197
https://docs.oasis-open.org/cacao/security-playbooks/v1.1/security-playbooks-v1.1.html
https://docs.oasis-open.org/cacao/security-playbooks/v1.1/security-playbooks-v1.1.html

 ICT-56-2020 “Next Generation Internet of Things”

 Grant Agreement number: 957218

ANNEX A – INTELLIOT ASSET MODEL SPECIFICATION FORM
This Annex provides several screenshots of the Asset Model specification form that was used to define the IntellIoT asset model, covering the general tab (Figure
42), the tab for defining software assets (Figure 43), as well as the ones for data (Figure 44) and hardware assets (Figure 45).

Figure 42.General tab of the asset model specification form (overview & guidelines)

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

69

Figure 43. Software asset entries (indicative)

Figure 44. Data asset entries (indicative)

Figure 45.Hardware asset entry (indicative)

ICT-56-2020 “Next Generation Internet of Things”
D4.8: Trust mechanisms (final version)
Dissemination level: Public

17/05/2023

70

ANNEX B – ASSET MODEL GRAMMAR
Examples of the use of the Asset Model Grammar used in the SAP are provided below (examples for Person, Software and Hardware assets, specifically).

Person(firstName("Demo"),lastName("User"),email("demo@sphynx.ch"),project("IntellIoT"),organisation("Sphynx Analytics
Ltd."),roles(Project end-user))

SoftwareAsset(vendor("Oracle Corporation"),version("9.6"),name("MySQL
Server"),kind(Service),type(SAL),project("IntellIoT"),organisation("Sphynx Analytics Ltd."),description("Relational
Database"))

SoftwareAsset(vendor("Mongodb"),version("4.2.1"),name("Mongodb"),kind(Service),type(SAL),project("IntellIoT"),organisation("
Sphynx Analytics Ltd."))

SoftwareAsset(vendor("Wso2"),version("3.0.0"),name("Api
Manager"),kind(Service),type(PAL),project("IntellIoT"),organisation("Sphynx Analytics Ltd."),owner("staff"),description("API
Manager")),

HardwareAsset(vendor("DELL"),version("6800"),name("Assurance ToolVM"),
value(3000.0),currency(EUR),hwType(compute),project("IntellIoT"),organisation("Sphynx Analytics Ltd."),CpuModule(name("Intel
i7-
8700"),manufacturer("GenuinIntel"),numberOfCores(4),numberOfThreads(8),baseClock(2.4),cache(12),MemoryModule(name("VENGEANCE
LPX"),size(32),type("DDR4"),speed(3200.0),manufacturer("Corsair")),NetworkAdapterModule(connectionType(Integrated),MAC("00:0
a:95:9d:68:16"),NetworkConfiguration(ipv4("195.201.62.1"),Subnet Mask("255.255.0.0"))))

